1,134 research outputs found

    Cessation of Nightly Voluntary Wheel Running Activity Following Exposure to a Mouse Model of Posttraumatic Stress

    Get PDF
    Regular physical activity (PA) is well known to positively impact physical and mental health outcomes. In our work to examine cardiovascular benefits of PA in a mouse model of posttraumatic stress, we stumbled upon the reciprocal relationship between PA and stress exposure, wherein stress significantly reduced healthy levels of routine PA. The aim of the present studies was to define the parameters of our paradigm. C67BL/6J male mice were divided into four groups (n=8/group): sedentary/control, voluntary running/control, sedentary/stress, and voluntary running/stress. Voluntary running groups were given unlimited access to a running wheel for 9 weeks. Stress groups were then exposed to a 5-day resident-intruder social stress that models human posttraumatic stress. Running behavior essentially ceased following stress. Habituation to stress occurred, as running distance increased by the 5th day of stress but remained significantly low. A separate study examined a single exposure to resident-intruder social stress. Plasma corticosterone significantly increased while nightly running dropped significantly but returned to normal by the 3rd night post-stress. These studies show the sensitivity of habitual running behavior to stress exposure and suggest the utility of this mouse model in exploring the means by which stress negatively impacts routine PA

    Dislocation core field. I. Modeling in anisotropic linear elasticity theory

    Get PDF
    Aside from the Volterra field, dislocations create a core field, which can be modeled in linear anisotropic elasticity theory with force and dislocation dipoles. We derive an expression of the elastic energy of a dislocation taking full account of its core field and show that no cross term exists between the Volterra and the core fields. We also obtain the contribution of the core field to the dislocation interaction energy with an external stress, thus showing that dislocation can interact with a pressure. The additional force that derives from this core field contribution is proportional to the gradient of the applied stress. Such a supplementary force on dislocations may be important in high stress gradient regions, such as close to a crack tip or in a dislocation pile-up

    Ground Vibrational State SiO Emission in the VLA BAaDE Survey

    Full text link
    Using a subsample of the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey of stellar SiO masers, we explore the prevalence and characteristics of 28^{28}SiO J=10,v=0J=1-0, v=0 emission. We identify 90 detections of maser, thermal, or composite 28^{28}SiO J=10,v=0J=1-0, v=0 emission out of approximately 13,000 candidate spectra from the NSF's Karl G. Jansky Very Large Array (VLA). We find that the detected sources are likely asymptotic giant branch (AGB) stars belonging to a bright, foreground Milky Way stellar disk population. For the 32 sources showing thermal components, we extract values for outflow velocity by fitting thermal line profiles. We find a range of circumstellar envelope expansion velocities, and compare to previously recorded OH and CO expansion velocities. This preliminary survey is already the largest study of stellar ground-vibrational-state SiO masers to date, and will be expanded to include the entire VLA BAaDE dataset when data reduction for the 18,988 target sources is completed.Comment: 23 pages, 8 figures, to be published in The Astronomical Journa

    Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity

    Full text link
    We study two closely related, nonlinear models of a viscoplastic solid. These models capture essential features of plasticity over a wide range of strain rates and applied stresses. They exhibit inelastic strain relaxation and steady flow above a well defined yield stress. In this paper, we describe a first step in exploring the implications of these models for theories of fracture and related phenomena. We consider a one dimensional problem of decohesion from a substrate of a membrane that obeys the viscoplastic constitutive equations that we have constructed. We find that, quite generally, when the yield stress becomes smaller than some threshold value, the energy required for steady decohesion becomes a non-monotonic function of the decohesion speed. As a consequence, steady state decohesion at certain speeds becomes unstable. We believe that these results are relevant to understanding the ductile to brittle transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure

    The First Survey of X-ray Flares from Gamma Ray Bursts Observed by Swift: Spectral Properties and Energetics

    Full text link
    Observations of gamma ray bursts (GRBs) with Swift produced the initially surprising result that many bursts have large X-ray flares superimposed on the underlying afterglow. The flares were sometimes intense, had rapid rise and decay phases, and occurred late relative to the ``prompt'' phase. Some remarkable flares are observed with fluence comparable to the prompt GRB fluence. Many GRBs have several flares, which are sometimes overlapping. Short, intense, repetitive, and late flaring can be most easily understood within the context of the standard fireball model with the internal engine that powers the prompt GRB emission in an active state at late times. However, other models for flares have been proposed. Flare origin can be investigated by comparing the flare spectra to that of the afterglow and the initial prompt emission. In this work, we have analyzed all significant X-ray flares from the first 110 GRBs observed by Swift. From this sample 33 GRBs were found to have significant X-ray flares, with 77 flares that were detected above the 3σ\sigma level. In addition to temporal analysis presented in a companion paper, a variety of spectral models have been fit to each flare. In some cases, we find that the spectral fits favor a Band function model, which is more akin to the prompt emission than to that of an afterglow. We find that the average fluence of the flares is 2.4e-7 erg/cm^2/s in the 0.2-10 keV energy band, which is approximately a factor of ten below the average prompt GRB fluence. These results, when combined with those presented in the companion paper on temporal properties of flares, supports the hypothesis that most X-ray flares are late-time activity of the internal engine that spawned the initial GRB; not an afterglow related effect.Comment: accepted by ApJ; 39 pages with 14 figures and 7 table

    Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Get PDF
    Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT) the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClO<sub>x</sub> from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO<sub>2</sub> for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs) has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite observations by the MLS instrument also show no definite connection between chlorine activation and PSC formation. The inter -and intra-annual variability of vortex-average HCl and HNO<sub>3</sub> based on MLS observations is examined for the Arctic winters 2004/2005 to 2010/2011. These observations show that removal of HCl and HNO<sub>3</sub> from the gas-phase are not correlated. HNO<sub>3</sub> loss exhibits great inter-annual variability depending on prevailing temperatures while HCl loss is continuous through December without considerable inter- or intra-annual variability. Only the recovery of HCl in late winter depends on the level of denitrification. Hence, the occurrence of HNO<sub>3</sub> containing PSC particles does not seem to have a significant effect on the speed of initial chlorine activation on a vortex-wide scale

    Left Ventricle Biomechanics of Low-Flow, Low-Gradient Aortic Stenosis: A Patient-Specific Computational Model

    Get PDF
    This study aimed to create an imaging-derived patient-specific computational model of low-flow, low-gradient (LFLG) aortic stenosis (AS) to obtain biomechanics data about the left ventricle. LFLG AS is now a commonly recognized sub-type of aortic stenosis. There remains much controversy over its management, and investigation into ventricular biomechanics may elucidate pathophysiology and better identify patients for valve replacement. ECG-gated cardiac computed tomography images from a patient with LFLG AS were obtained to provide patient-specific geometry for the computational model. Surfaces of the left atrium, left ventricle (LV), and outflow track were segmented. A previously validated multi-scale, multi-physics computational human heart model was adapted to the patient-specific geometry, yielding a model consisting of 91,000 solid elements. This model was coupled to a virtual circulatory system and calibrated to clinically measured parameters from echocardiography and cardiac catheterization data. The simulation replicated key physiologic parameters within 10% of their clinically measured values. Global LV systolic myocardial stress was 7.1 ± 1.8 kPa. Mean stress of the basal, middle, and apical segments were 7.7 ± 1.8 kPa, 9.1 ± 3.8 kPa, and 6.4 ± 0.4 kPa, respectively. This is the first patient-specific computational model of LFLG AS based on clinical imaging. Low myocardial stress correlated with low ejection fraction and eccentric LV remodeling. Further studies are needed to understand how alterations in LV biomechanics correlates with clinical outcomes of AS
    corecore