34 research outputs found

    Modeling Agricultural Production Considering Water Quality and Risk

    Get PDF
    Environmental goals often conflict with the economic goals of agricultural producers. The Cottonwood River in Minnesota is heavily polluted with nitrogen, phosphate and sediment from agricultural sources in the watershed. Goals of profit maximization for producers conflict with those of effluent alleviation. We incorporate water quality goals and risk into a mathematical programming framework to examine economically efficient means of pollution abatement while considering a wide range of alternative production practices.Production Economics,

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    9 Pág.Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments.G.V., R.B. and S.H. acknowledge FORMAS grants 2018-02872 and 2018-02321. TMB acknowledges USDA AFRI grant 2017-67013-26254. LTEs managed by SRUC were supported by the Scottish Government RESAS Strategic Research Programme under project D3-, Healthy Soils for a Green Recovery. Swedish LTEs were funded by the Swedish University of Agricultural Sciences (SLU). We thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NC) was supported by the UK BBSRC (Biotechnology and Biological Sciences Research Council, BBS/E/C/000J0300) and the Lawes Agricultural Trust. The Woodslee site was supported by the Agro-Ecosystem Resilience Program (Agriculture & Agri-Food Canada) and field management provided by field crews over 6 decades is appreciated. La Canaleja LTE (Spain) was supported by RTA2017-00006-C03-01 project (Ministry of Science and Innovation. El Encín LTEs were supported by Spanish Ministry of Economy and Competitiveness funds (projects AGL2002-04186-C03-01.03, AGL2007-65698-C03-01.03, AGL2012-39929-C03-01 of which L. Navarrete was the P.I). R.A., A.G.D. and E.H.P. are also grateful to all members of the Weed Science Group from El Encín Experimental Station for their technical assistance in managing the experiments. The Brody/Poznan University of Life Sciences long-term experiments were funded by the Polish Ministry of Education and Science. We acknowledge the E-Obs dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu/).Peer reviewe

    Crop rotational diversity can mitigate climate-induced grain yield losses

    Get PDF
    Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.</p

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Modeling Agricultural Production Considering Water Quality and Risk

    No full text
    Environmental goals often conflict with the economic goals of agricultural producers. The Cottonwood River in Minnesota is heavily polluted with nitrogen, phosphate and sediment from agricultural sources in the watershed. Goals of profit maximization for producers conflict with those of effluent alleviation. We incorporate water quality goals and risk into a mathematical programming framework to examine economically efficient means of pollution abatement while considering a wide range of alternative production practices

    Buffers and Vegetative Filter Strips

    Get PDF
    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards: Filter Strip (393) Alley Cropping (311) Riparian Forest Buffer (391) Vegetative Barrier (601) Conservation Cover (327) Riparian Herbaceous Cover (390) Contour Buffer Strips (332) Grassed Waterway (412) Placement of most of these practices is illustrated in figure 4-1. Common purposes of these herbaceous components (as defined by the NRCS Conservation Practice Standards) are to: • Reduce the sediment, particulate organics, and sediment-adsorbed contaminant loadings in runoff. • Reduce dissolved contaminant loadings in runoff. • Serve as Zone 3 of a riparian forest buffer. • Reduce sediment, particulate organics, and sediment-adsorbed contaminant loadings in surface irrigation tailwater. • Restore, create, or enhance herbaceous habitat for wildlife and beneficial insects. • Maintain or enhance watershed functions and values. • Reduce sheet and rill erosion. • Convey runoff from terraces, diversions, or other water concentrations without causing erosion or flooding (grassed waterway). • Reduce gully erosion (grassed waterway and vegetative barrier). The term buffer is used here to generally refer to all eight practice standards noted above. These can be further identified as “edge-of-field” and “in-field” buffers consistent with the terminology used by Dabney et al. (2006). Edge-of-field buffers include filter strips, riparian forest buffers, and riparian herbaceous cover. In-field buffers include conservation cover, contour buffer strips, alley cropping, and grassed waterways. Vegetative barriers could be either in-field or edge-of-field buffers

    Validating N Rates for Corn on Farm Fields in Southern Minnesota

    No full text
    11 pages. Illustrated. Includes bibliographical references. Subtitle on cover: "Recommendations to optimize profits and protect water quality.". This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu."This publication describes the results of 29 site-years of research on farm fields in Southern Minnesota to find the best rate of nitrogen (N) to apply for corn after soybeans. Results show that the N rate recommended by the University achieves optimum corn yield and may be greater than needed for maximum profitability in many fields."(p.3)University of Minnesota Extension Service; University of Minnesota College of Agricultural, Food and Environmental Sciences
    corecore