178 research outputs found

    Selectivity of nanocavities and dislocations for gettering of Cu and Fe in silicon

    No full text
    The selectivity of interstitial-based extended defects (loops) and nanocavities for the gettering of Cu and Fe in Si has been studied. Controlled amounts of Cu and Fe were introduced by ion implantation into wafers containing pre-existing nanocavities and/or dislocations. Results show that Cu has a strong preference for gettering to open volume defects, even when high concentrations of interstitial-based loops are present in close proximity. However, the gettering of Fe in samples containing both vacancy- and interstitial-type defects is more complex, with Fe accumulation at all regions in the sample which contain defects, whether they are vacancy- or interstitial-like in character

    Universal relationship between the penetration depth and the normal-state conductivity in YBaCuO

    Full text link
    The absolute values of the conductivity in the normal state sigma_n and of the low temperature penetration depths lambda(0) were measured for a number of different samples of the YBaCuO family. We found a striking correlation between sigma_n and 1/lambda^2, regardless of doping, oxygen reduction or defects, thus providing a simple method to predict the superconducting penetration depth and to have an estimate of the sample quality by measuring the normal-state conductivity.Comment: 7 pages, 1 figure, Europhys. Lett., accepte

    Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic.</p> <p>Methods</p> <p>Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects.</p> <p>Results</p> <p>We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia.</p> <p>Conclusion</p> <p>Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.</p

    Prodrug converting enzyme gene delivery by L. monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p

    Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study

    Full text link
    A recent experiment by Shimizu et al. has provided evidence of a superconducting phase in hcp Fe under pressure. To study the pressure-dependence of this superconducting phase we have calculated the phonon frequencies and the electron-phonon coupling in hcp Fe as a function of the lattice parameter, using the linear response (LR) scheme and the full potential linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the Eliashberg functions α2F\alpha^2 F indicate that conventional s-wave electron-phonon coupling can definitely account for the appearance of the superconducting phase in hcp Fe. However, the observed change in the transition temperature with increasing pressure is far too rapid compared with the calculated results. For comparison with the linear response results, we have computed the electron-phonon coupling also by using the rigid muffin-tin (RMT) approximation. From both the LR and the RMT results it appears that electron-phonon interaction alone cannot explain the small range of volume over which superconductivity is observed. It is shown that ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from magnetic impurities (spin-ordered clusters) can account for the observed values of the transition temperatures but cannot substantially improve the agreeemnt between the calculated and observed presure/volume range of the superconducting phase. A simplified treatment of p-wave pairing leads to extremely small (102\leq 10^{-2} K) transition temperatures. Thus our calculations seem to rule out both ss- and pp- wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR

    What are the experimentally observable effects of vertex corrections in superconductors?

    Full text link
    We calculate the effects of vertex corrections, of non-constant density of states and of a (self-consistently determined) phonon self-energy for the Holstein model on a 3D cubic lattice. We replace vertex corrections with a Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the calculations, to see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable effects ofvertex corrections on a variety of thermodynamic properties of superconductors. To this end, we employ conserving approximations (in the local approximation) to calculate the superconducting critical temperatures, isotope coefficients, superconducting gaps, free-energy differences and thermodynamic critical fields for a range of parameters. We find that the dressed value of lambda is significantly larger than the bare value. While vertex corrections can cause significant changes in all the above quantities (even whenthe bare electron-phonon coupling is small), the changes can usually be well-modeled by an appropriate Coulomb pseudopotential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections that can not be mimicked by a mu*.Comment: 28 pages, 12 figure
    corecore