1,351 research outputs found

    The reticulons: a family of proteins with diverse functions

    Get PDF
    The reticulon family is a diverse group of proteins that mostly localize to the endoplasmic reticulum and may be important in neurodegenerative diseases

    Properties of the separated catalytic and regulatory units of brain adenylate cyclase.

    Full text link

    Multi-excitonic complexes in single InGaN quantum dots

    Full text link
    Cathodoluminescence spectra employing a shadow mask technique of InGaN layers grown by metal organic chemical vapor deposition on Si(111) substrates are reported. Sharp lines originating from InGaN quantum dots are observed. Temperature dependent measurements reveal thermally induced carrier redistribution between the quantum dots. Spectral diffusion is observed and was used as a tool to correlate up to three lines that originate from the same quantum dot. Variation of excitation density leads to identification of exciton and biexciton. Binding and anti-binding complexes are discovered.Comment: 3 pages, 4 figure

    Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots

    Get PDF
    A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.Comment: 4 pages, 4 figure

    Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses

    Get PDF
    Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in-situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs) achieving their efficient coupling to the external light field. This enables to perform four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the lineshape of the phonon-assisted PL using realistic quantum dot geometries

    MIPS: The Multiband Imaging Photometer for SIRTF

    Get PDF
    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700μm spectral region. It will use high performance photoconductive detectors from 3 to 200μm with integrating JFET amplifiers. From 200 to 700μm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution

    Investigation of proton damage in III-V semiconductors by optical spectroscopy

    Get PDF
    We studied the damage produced by 2MeV proton radiation on epitaxially grown InGaP/GaAs structure by means of spatially resolved Raman and photoluminescence (PL) spectroscopy. The irradiation was performed parallel to the sample surface in order to determine the proton penetration range in both compounds. An increase in the intensity of longitudinal optical phonons and a decrease in the luminescence were observed. We associate these changes with the creation of defects in the damaged region, also responsible for the observed change of the carrier concentration in the GaAs layer, determined by the shift of the phonon-plasmon coupled mode frequency. From the spatially resolved profile of the PL and phonon intensities, we obtained the proton range in both materials and we compared them with stopping and range of ions in matter simulations. The comparison between the experimentally obtained proton range and simulations shows a very good agreement for GaAs but a discrepancy of 20% for InGaP. This discrepancy can be explained in terms of limitations of the model to simulate the electronic orbitals and bonding structure of the simulated compound. In order to overcome this limitation, we propose an increase in 40% in the electronic stopping power for InGaP.This work was supported by BEC.AR FUNDACION YPF-CONICET 2013 (Argentina) and DFG within Grant No. SFB 787. ARG thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for its support through Grant No. SEV-2015-0496 in the framework of the Spanish Severo Ochoa Centre of Excellence program.Peer reviewe
    corecore