72 research outputs found

    Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes

    Get PDF
    Mammalian interphase and mitotic cells were analyzed for their cation composition using a three-dimensional high resolution scanning ion microprobe. This instrument maps the distribution of bound and unbound cations by secondary ion mass spectrometry (SIMS). SIMS analysis of cryofractured interphase and mitotic cells revealed a cell cycle dynamics of Ca2+, Mg2+, Na+, and K+. Direct analytical images showed that all four, but no other cations, were detected on mitotic chromosomes. SIMS measurements of the total cation content for diploid chromosomes imply that one Ca2+ binds to every 12.5–20 nucleotides and one Mg2+ to every 20–30 nucleotides. Only Ca2+ was enriched at the chromosomal DNA axis and colocalized with topoisomerase IIα (Topo II) and scaffold protein II (ScII). Cells depleted of Ca2+ and Mg2+ showed partially decondensed chromosomes and a loss of Topo II and ScII, but not hCAP-C and histones. The Ca2+-induced inhibition of Topo II catalytic activity and direct binding of Ca2+ to Topo II by a fluorescent filter-binding assay supports a regulatory role of Ca2+ during mitosis in promoting solely the structural function of Topo II. Our study directly implicates Ca2+, Mg2+, Na+, and K+ in higher order chromosome structure through electrostatic neutralization and a functional interaction with nonhistone proteins

    Clinical aspects of Mayer-Rokitansky-Kuester-Hauser syndrome: recommendations for clinical diagnosis and staging

    Get PDF
    BACKGROUND: The Mayer-Rokitansky-Kuester-Hauser (MRKH) syndrome is a malformation of the female genitals (occurring in one in 4000 female live births) as a result of interrupted embryonic development of the Müllerian (paramesonephric) ducts. This retrospective study examined the issue of associated malformations, subtyping, and the frequency distribution of subtypes in MRKH syndrome. METHODS: Fifty-three MRKH patients were investigated using a newly developed standardized questionnaire. Together with the results of clinical and diagnostic examinations, the patients were classified into the three recognized subtypes [typical, atypical and MURCS (Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia)]. RESULTS: The typical form was diagnosed in 25 patients (47%), the atypical form in 11 patients (21%), and the most marked form—the MURCS type—in 17 patients (32%). Associated malformations were notably frequent among the patients. Malformations of the renal system were the most frequent type of accompanying malformation, with 23 different malformations in 19 patients, followed by 18 different skeletal changes in 15 patients. CONCLUSIONS: In accordance with the literature, this study shows that associated malformations are present in more than a third of cases. Therefore, new basic guidelines for standard diagnostic classification involving patients with suspected MRKH are presente

    Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon – derived family during mouse placentogenesis

    Get PDF
    Background LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation. Results Quantitative PCR, in situ hybridization (ISH) and immunoblotting showed various expression patterns of the 11 mouse Mart genes through different placental stages. Zcchc5/Mart3, Zcchc16/ Mart4 and Rgag1/Mart9 expression was undetectable. Rtl1/Mart1, Peg10/Mart2, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a gene expression was very low at the blastocyst stage. Later placental stages showed an increase of expression for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a, the latter up to 1,489 molecules/ng cDNA at E9.5. From our recently published findings Peg10/Mart2 was the most highly expressed Mart gene. ISH demonstrated sense and antisense transcript co-localization of Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a in trophoblast subtypes at the junctional zone, with an accumulation of antisense transcripts in the nuclei. To validate these results, we developed a TAG-aided sense/antisense transcript detection (TASA-TD) method, which verified sense and antisense transcripts for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a. Except for Rtl1/Mart1 and Cxx1a,b/Mart8b,c all other Mart genes showed a reduced amount of antisense transcripts. Northern blot and 5′ and 3′ RACE confirmed both sense and antisense transcripts for Ldoc1/Mart7 and Cxx1a,b,c/Mart8b,c,a. Immunoblotting demonstrated a single protein throughout all placental stages for Ldoc1/Mart7, but for Cxx1a,b,c/Mart8b,c,a a switch occurred from a 57 kDa protein at E10.5 and E14.5 to a 25 kDa protein at E16.5 and E18.5. Conclusions RNA and protein detection of mouse Mart genes support neo-functionalization of retrotransposons in mammalian genomes. Undetectable expression of Zcchc5/Mart3, Zcchc16/Mart4 and Rgag1/Mart9 indicate no role during mouse placentogenesis. Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a gene expression support a role for differentiation from the ectoplacental cone. Mart antisense transcripts and protein alterations predict unique and complex molecular regulation in a time directed manner throughout mouse placentogenesis

    Circulating Micro-RNAs as Potential Blood-Based Markers for Early Stage Breast Cancer Detection

    Get PDF
    INTRODUCTION: MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. METHODS: We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718). RESULTS: Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. CONCLUSIONS: MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use

    High incidence of recurrent copy number variants in patients with isolated and syndromic Müllerian aplasia

    Get PDF
    Background Congenital malformations involving the Müllerian ducts are observed in around 5% of infertile women. Complete aplasia of the uterus, cervix, and upper vagina, also termed Müllerian aplasia or Mayer–Rokitansky–Kuster–Hauser (MRKH) syndrome, occurs with an incidence of around 1 in 4500 female births, and occurs in both isolated and syndromic forms. Previous reports have suggested that a proportion of cases, especially syndromic cases, are caused by variation in copy number at different genomic loci. Methods In order to obtain an overview of the contribution of copy number variation to both isolated and syndromic forms of Müllerian aplasia, copy number assays were performed in a series of 63 cases, of which 25 were syndromic and 38 isolated. Results A high incidence (9/63, 14%) of recurrent copy number variants in this cohort is reported here. These comprised four cases of microdeletion at 16p11.2, an autism susceptibility locus not previously associated with Müllerian aplasia, four cases of microdeletion at 17q12, and one case of a distal 22q11.2 microdeletion. Microdeletions at 16p11.2 and 17q12 were found in 4/38 (10.5%) cases with isolated Müllerian aplasia, and at 16p11.2, 17q12 and 22q11.2 (distal) in 5/25 cases (20%) with syndromic Müllerian aplasia. Conclusion The finding of microdeletion at 16p11.2 in 2/38 (5%) of isolated and 2/25 (8%) of syndromic cases suggests a significant contribution of this copy number variant alone to the pathogenesis of Müllerian aplasia. Overall, the high incidence of recurrent copy number variants in all forms of Müllerian aplasia has implications for the understanding of the aetiopathogenesis of the condition, and for genetic counselling in families affected by it
    • …
    corecore