22 research outputs found

    Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    No full text
    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes bearing the heteroscorpionate ligand 3,3-bis(3,5-dimethylpyrazol-1-yl)propionate (bpzp) and the tris-imidazole complex [Mn(CO)3(HIm)3]Br were prepared. These and the literature-known tricarbonyl complexes based on bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), bis(pyrazol-1-yl)acetate (bpza), 3,3-bis(3,5-dimethylpyrazol-1-yl)propionate (bdmpzp) and [MnBr(CO)3-(Hpz)2] were tested for their potential to act as photoactivable CO-releasing molecules (PhotoCORMs) by the UV/Vis spectroscopy-based myoglobin assay. The manganese(I) complexes of the monodentate imidazole and pyrazole ligands lack stability in solution and show fast CO-release already in the dark. In the four heteroscorpionate complexes, the substitution pattern and the chain length of the carboxylate moiety have a pronounced influence on the stability in solution and the CO-release properties. The second part of this work contains the synthesis and characterization of ruthenium carbonyl complexes bearing heteroscorpionate ligands and was accomplished in collaboration with S. TAMPIER and G. TÜRKOGLU. The syntheses of the two dicarbonyl complexes [Ru(bdmpza)Cl(CO)2] (9) and [Ru(2,2-bdmpzp)Cl(CO)2] (10), bearing a bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) or a 2,2- bis(3,5-dimethylpyrazol-1-yl)propionato (2,2-bdmpzp) scorpionate ligand, have been previously described by S. TAMPIER and G. TÜRKOGLU and following the same procedure the bis(pyrazol-1-yl)acetato (bpza) based complex has been obtained. All three complexes were synthesized by reacting the polymer [RuCl2(CO)2]n with the potassium salt of the corresponding ligand (K[bdmpza], K[bpza] or K[2,2-bdmpzp]). Reaction of the acid Hbdmpza with [Ru3(CO)12] resulted in the formation of two structural isomers of a hydrido complex, [Ru (bdmpza)H(CO)2] (11A/11B). Under aerobic conditions the conversion of [Ru(bdmpza)H(CO)2] (11A/11B) to form the Ru(I) dimer [Ru(bdmpza)(CO)(ÎŒ2-CO)]2 (12) seems to be hindered compared to the η5-C5H5 (Cp) analogues. Dimer 12 was obtained via reaction of Hbdmpza with catena-[Ru(OAc)(CO)2]n instead. In the third part, a topic with bioinorganic focus was described. The reaction of [Ru(bdmpza)Cl(PPh3)2] with aminophenol (APH) and 2-amino-4,6-di-tert-butylphenol (tBuAPH) led to the corresponding complexes [Ru(bdmpza)Cl(ISQ)(PPh3)] or [Ru(bdmpza)Cl(IBQ)(PPh3)] (16) and [Ru(bdmpza)Cl(tBuISQ)(PPh3)] or [Ru(bdmpza)Cl-(tBuIBQ)(PPh3)] (15). In both complexes the uncommon Îș1 coordination of the imino moiety was observed and not the expected Îș2 N,O coordination. From the single crystal X-ray structure determination and the diamagnetic NMR spectra it was concluded that the complex could best be described as [Ru2+–IBQ] or [Ru3+–ISQ] with strong antiferromagnetic coupling. This gives rise to the question of the occurring redox chemistry as future work will have to determine the dependence of the reaction on oxidizing agents and in consequence an optimization of the reaction. In the main part of this work a series of ruthenium allenylidene complexes bearing polyaromatic substituents was prepared starting from [Ru(bdmpza)Cl(PPh3)2] (14). Reacting 14 with 1,1-bis-(3,5-di-tert-butylphenyl)-1-methoxy-2-propyne results in the formation of two structural isomers of an allenylidene complex [Ru(bdmpza)Cl(═C═C═C(PhtBu2)2)(PPh3)] (19A/19B) and the related carbonyl complex [Ru(bdmpza)Cl(CO)(PPh3)] (18A/18B). Conversion of 9-ethynyl-9-fluorenol led to the corresponding allenylidene complex [Ru(bdmpza)Cl(═C═C═(FN))(PPh3)] (20A/20B) (FN = fluorenyl). Based on anthraquinone a new synthetic route towards 10-ethynyl-10-hydroxyanthracen-9-one via the TMS protected propargyl alcohol is described. Starting thereof, the synthesis of the allenylidene complex ([Ru(bdmpza)Cl(═C═C═(AO))(PPh3)] (25A/25B) (AO = anthrone) is reported and showed interesting π-π stacking interactions in the solid state between two anthrone units. In a next step the larger acene pentacenequinone was used as starting material in cooperation with A. WATERLOO of the group of R. TYKWINSKI to synthesize [Ru(bdmpza)Cl(═C═C═(PCO))-(PPh3)] (29A/29B) (PCO = pentacenone). In comparison with other ruthenium allenylidene complexes, the Ru–C3 chain was extremely bent and these distorted angles, which were unprecedented for mononuclear ruthenium allenylidene complexes, might have be caused by crystal packing effects. As again only dimerization in the solid state could be observed, it was decided to use polyaromatic ketones with extended π systems along the allenylidene direction. As suitable compound 7H-benzo[no]tetraphen-7-one (34) was used and the route from 34 towards the propargyl alcohol 7-ethynyl-7H-benzo[no]tetraphen-7-ol (36) and the transformation into the allenylidene complex [Ru(bdmpza)Cl(═C═C═(BT))(PPh3)] (37A/37B) (BT = benzotetraphene) was described. Especially complex 37A is a promising candidate for future studies metal-tuned FET studies, since several short-contact interactions between the benzotetraphene throughout the entire crystal could be observed possibly allowing charge transport along this axis. All aforementioned complexes showed weak absorptions in the NIR region that could be assigned to forbidden MLCT transitions. TD-DFT calculations that were performed by E. HÜBNER starting from the single crystal X-ray structure determinations proved this assignment to transitions involving mainly the HOMO–2, HOMO–1, HOMO and LUMO. In addition cyclic voltammetry has been used to probe the electrochemistry of each complex. In summary, it was shown that the arrangement observed for several compounds in the crystalline state renders the presented complexes promising candidates for metal-tuned FETs or “organic” metal–semiconductor field-effect transistors (OMESFETs), whereas the electron-accepting ability and low-energy absorption characteristics might be tuned for an application in solar cells. Both aspects present an appealing starting point for new kinds of functionalized organic semiconductors. In an attempt to obtain an allenylidene complex starting from 2-(13-(dicyanomethyl)-13-ethynylpentacen-6(13H)-ylidene)malononitrile (30), the corresponding vinylidene complex [Ru(bdmpza)Cl(═C═CH(PCN))(PPh3)] (PCN = pentacenone based tetracyano derivative) (31) was isolated. The strong push-pull character of the cyano substituents leads to an intensive blue color of the vinylidene complex 31. For comparisons and possible catalytic applications the 16 VE ruthenium allenylidene complexes [RuCl2(═C═C═(FN))(PPh3)2] (45), [RuCl2(═C═C═(AO))(PPh3)2] (46) and [RuCl2(═C═C═(PCO))(PPh3)2] (47) were prepared. However, in solution all three showed the tendency to form a mixture of a cationic and a neutral dimeric 18 VE complex, leading to an unfavorable equilibrium. The work presented in the next chapter focuses on the preparation of ruthenium cumulenylidene complexes that might be suitable for exfoliation of carbon nanotubes. Therefore, the two vinylidene complexes [Ru(bdmpza)Cl(═C═CH(6-methoxynaphthalene))-(PPh3)] (48) and [Ru(bdmpza)Cl(═C═CH(Pyr))(PPh3)] (49) were prepared. While remarkably stable for ruthenium vinylidene comlexes, the degradation within days was a major drawback for both complexes. Therefore, the idea was to again focus on allenylidene complexes and in this case the pyrene substituted propargyl alcohol 1-phenyl-1-(pyren-1-yl)prop-2-yn-1-ol (51) was prepared from pyrenophenone (50). The corresponding ruthenium allenylidene complex [Ru(bdmpza)Cl(═C═C═C(PhPyr))(PPh3)] (54A/54B) was isolated and showed absorption propeties closely related to the complex [Ru(bdmpza)Cl(═C═C═CPh2)-(PPh3)], indicating that no conjugation between the allenylidene moiety and the pyrene substituent was present. To enhance the solubility of the allenylidene complexes in polar protic solvents, the exchange of the PPh3 ligand with the PTA ligand (1,3,5-triaza-7-phosphaadamantane) was investigated. While the complexes [Ru(bdmpza)Cl(═C═C═(FN))-(PTA)] (57A) and [Ru(bdmpza)Cl-(═C═C═C(PhPyr))(PTA)] (58A) could be prepared from [Ru(bdmpza)Cl(PTA)(PPh3)] (55), the stability was strongly decrased, leaving both complexes unsuitable for further applications. In the future, especially complex 54A/54B should be studied for possible non-covalent functionalizations of carbon nanotubes in polar solvents. In the last chapter, the intramolecular Scholl Reaction of pyrenophenone (50) was discussed in detail. Opposing to the literature the extended polyaromatic compound could be unambiguously identified as 11H-indeno[2,1-a]pyren-11-one (64). Furthermore, the possible intermediary reduced compound 6,6a-dihydro-11H-indeno[2,1-a]pyren-11-one (63) could be isolated. Currently calculations are performed in the CLARK group by C. WICK to understand the mechanistic pathway from 50 to 64 and to see if the Arenium Cation Pathway is suitable or radical intermediates are preferred.In vorhergehenden Arbeiten der Arbeitsgruppe BURZLAFF wurde die Entwicklung von verschiedenartigen N,N,O-Liganden fĂŒr Anwendungen in der Katalyse und in bio-anorganischen Modellkomplexen untersucht. Insbesondere der methylsubstituierte Ligand Bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) besitzt eine vielfĂ€ltige Chemie, welche viele Parallelen zu den anionischen Cyclopentadienyl- (Cp) und Hydridotris(pyrazol-1-yl)boratoliganden (Tp) aufweist. Im ersten Teil dieser Arbeit wurde die Darstellung von Tricarbonylmangan(I)komplexen mit dem Heteroskorpionatliganden 3,3-Bis(3,5-dimethylpyrazol-1-yl)propionato (bpzp) und die Synthese des Trisimidazolylkomplexes [Mn(CO)3(HIm)3]Br (6) untersucht. Diese beiden Komplexe, sowie die analogen Tricarbonylmangankomplexe mit den Hetero-skorpionatliganden Bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza), Bis(pyrazol-1-yl)acetato (bpza) und 3,3-Bis(3,5-dimethylpyrazol-1-yl)propionato (bdmpzp), und der Komplex [Mn(CO)3(HIm)3]Br, wurden auf ihre Eigenschaften als photoaktivierbare Kohlenstoff-monoxid-freisetzende MolekĂŒle hin untersucht. Hierzu wurde das Myoglobin-Assay verwendet, mit dessen Hilfe gezeigt werden konnte, dass die beiden Komplexe mit den monodentaten Imidazolyl- und Pyrazolylliganden eine geringe StabilitĂ€t in Lösung aufweisen und bereits im Dunklen Kohlenstoffmonoxid freisetzen. FĂŒr die vier Hetero-skorpionatkomplexe ließ sich eine starke AbhĂ€ngigkeit der Freisetzungsgeschwindigkeit von dem Substitutionsmuster der Heterozyklen und der KettenlĂ€nge der Carboxylateinheit erkennen. Der zweite Teil dieser Arbeit beinhaltet die Synthese und Charakterisierung von Rutheniumcarbonylkomplexen und wurde in Zusammenarbeit mit S. TAMPIER und G. TÜRKOGLU bearbeitet. Die Synthese der beiden Dicarbonylkomplexe [Ru(bdmpza)Cl(CO)2] (9) und [Ru(2,2-bdmpzp)Cl(CO)2] (10) mit einem Bis(3,5-dimethylpyrazol-1-yl)acetato- (bdmpza) oder einem 2,2- Bis(3,5-dimethylpyrazol-1-yl)propionatoligand (2,2-bdmpzp) wurden bereits von S. TAMPIER und G. TÜRKOGLU beschrieben. In Analogie wurde der auf dem Bis(pyrazol-1-yl)acetatoligand (bpza) basierende Komplex [Ru(bpza)Cl(CO)2] dargestellt. Alle drei Komplexe sind durch die Reaktion des Polymers [RuCl2(CO)2]n mit dem Kaliumsalz des jeweiligen Heteroskorpionatliganden (K[bdmpza], K[bpza] oder K[2,2-bdmpzp]) zugĂ€nglich. Die Reaktion der freien SĂ€ure Hbdmpza mit [Ru3(CO)12] fĂŒhrte zu der Bildung von zwei Strukturisomeren des Hydridokomplexes [Ru (bdmpza)H(CO)2] (11A/11B). Unter aeroben Bedingungen scheint die Umsetzung von [Ru(bdmpza)H(CO)2] (11A/11B) zu dem Ru(I)-Dimer [Ru(bdmpza) (CO)(ÎŒ2-CO)]2 (12) im Vergleich zu dem η5 C5H5-Analogon (Cp) gehindert zu sein. Dimer 12 konnte hingegen durch die Reaktion von Hbdmpza mit catena-[Ru(OAc)(CO)2]n erhalten werden. Der dritte Abschnitt behandelt einen bioanorganischen Themenbereich und beinhaltet zwei Rutheniumkomplexe mit Aminophenolliganden. Die Reaktion von [Ru(bdmpza)Cl(PPh3)2] mit Aminophenol (APH) und 2-Amino-4,6-di-tert-butylphenol (tBuAPH) fĂŒhrte zu den zugehörigen Komplexen [Ru(bdmpza)Cl(ISQ)(PPh3)] bzw. [Ru(bdmpza)Cl(IBQ)(PPh3)] (16) und [Ru(bdmpza)Cl(tBuISQ)(PPh3)] bzw. [Ru(bdmpza)Cl(tBuIBQ)(PPh3)] (15). In beiden Komplexen konnte die ungewöhnliche Îș1 Koordination durch die Iminofunktion beobachtet werden und nicht die erwartete Îș2 N,O-Koordination. Aus den beobachteten BindungslĂ€ngen in den Röntgenstrukturanalysen und den diamagnetischen NMR-Spektren konnte geschluss-folgert werden, dass es sich bei den beiden Komplexen um ein [Ru2+–IBQ]-System oder ein [Ru3+–ISQ]-System mit starker antiferromagnetischer Kopplung handelt. Weitere Arbeiten mĂŒssen in Zukunft zeigen welche Redoxprozesse im Detail wĂ€hrend der Bildung der Komplexe ablaufen und ob infolgedessen eine Optimierung der Reaktion möglich ist. Der Hauptfokus dieser Arbeit liegt auf einer Serie von kohlenstoffreichen Rutheniumallenylidenkomplexen, die ausgehend von dem Rutheniumprecursor [Ru(bdmpza)-Cl(PPh3)2] (14) dargestellt wurden. Die Umsetzung von 14 mit 1,1-Bis-(3,5-di-tert-butylphenyl)-1-methoxy-2-propin fĂŒhrte zu der Bildung von zwei Strukturisomeren des Allenylidenkomplexes [Ru(bdmpza)Cl(═C═C═C(PhtBu2)2)(PPh3)] (19A/19B) und den durch Zersetzung entstehenden Carbonylkomplex [Ru(bdmpza)Cl(CO)(PPh3)] (18A/18B). Die analoge Umsetzung von 9-Ethinyl-9-fluorenol mit 14 fĂŒhrte zu dem analogen fluorensubstituierten Allenylidenkomplex [Ru(bdmpza)Cl(═C═C═(FN))(PPh3)] (20A/20B) (FN = Fluorenyl). Ausgehend von Anthrachinon wurde die Synthese von 10-Ethinyl-10-hydroxyanthracen-9-on ĂŒber den TMS-geschĂŒtzten (TMS = Trimethylsilyl) Propargylalkohol beschrieben. Anschließend erfolgte die Synthese des Allenylidenkomplexes ([Ru(bdmpza)-Cl(═C═C═(AO))(PPh3)] (25A/25B) (AO = Anthron), der im Falle beider Strukturisomere im Festkörper starke π-π-Wechselwirkungen zwischen zwei Anthroneinheiten aufweist. Im nĂ€chsten Schritt wurde in Kooperation mit A. WATERLOO aus der Arbeitsgruppe von R. TYKWINSKI die Synthese eines grĂ¶ĂŸeren acenbasierten, in diesem Fall pentacenchinonbasierten, Allenylidenkomplexes [Ru(bdmpza)Cl-(═C═C═(PCO))(PPh3)] (29A/29B) (PCO = Pentacenon) erzielt. Im Gegensatz zu anderen Rutheniumallenylidenkomplexen zeigte 29B eine stark gewinkelte Ru–C3-Kette. Diese Geometrie konnte auf das Packungsmotiv im Festkörper zurĂŒckgefĂŒhrt werden, da dieses Verhalten fĂŒr 29A nicht beobachtet wurde. Da erneut nur eine Dimerbildung, aber keine Schichtstruktur der aromatischen Einheiten, im Festkörper vorlag, wurde entschieden, ein weiteres polyaromatisches Keton als Ausgangsverbindung zu wĂ€hlen. Hierbei wurde 7H Benzo[no]tetraphen-7-on (34) als vielversprechender Kandidat verwendet, da dieser ein erweitertes π-System auf der dem Keton abgewandten Seite besitzt. Ausgehend von 34 wurde die Synthese des Propargylalkohols 7-Ethinyl-7H-benzo[no]tetraphen-7-ol (36) und die anschließende Umsetzung zu dem Allenylidenkomplex [Ru(bdmpza)Cl(═C═C═(BT))(PPh3)] (37A/37B) (BT = Benzotetraphen) beschrieben. Hervorzuheben ist Komplex 37A, da eine Reihe an kurzen π-π-AbstĂ€nden zwischen den Benzotetrapheneinheiten entlang einer Achse im Kristall auftritt, die möglicherweise einen Ladungstransport entlang dieser Achse erlauben könnte. Studien der Absorptionsspektren der bisher erwĂ€hnten Komplexe zeigten, dass schwache Banden im NIR-Bereich zu verbotenen MLCT-ÜbergĂ€ngen gehören. TD-DFT Berechnungen wurden von E. HÜBNER ausgehend von Röntgenstrukturanalysen durchgefĂŒhrt. Diese Berechnungen erlauben die Zuordnung dieser NIR-Banden, die durch Absorptionsspektroskopie beobachtet wurden, zu ÜbergĂ€ngen, die vor allem HOMO–2, HOMO–1, HOMO und LUMO betreffen. Des Weiteren wurden cyclovoltammetrische Messungen durchgefĂŒhrt um ein VerstĂ€ndnis fĂŒr den Einfluss der Substituenten auf den Allenylidenkomplex zu erhalten. Zusammenfassend lĂ€sst sich sagen, dass die rĂ€umliche Anordnung, die fĂŒr einige Komplexe im Festkörper beobachtet wurde, diese zu vielversprechenden Kandidaten fĂŒr Metall-beeinflusste Feldeffekttransistoren macht. DarĂŒber hinaus könnte das reversible Redoxverhalten und das breite Absorptionsverhalten sie zu guten Ausgangsverbindungen fĂŒr Farbstoffsolarzellen machen. Diese beiden möglichen Anwendungsbeispiele machen diese Komplexe zu interessanten Ausgangsverbindungen fĂŒr weitere funktionalisierte organische Halbleiter. Der Versuch, einen Allenylidenkomplex ausgehend von 2-(13-(Dicyanomethyl)-13-ethinylpentacen-6(13H)-yliden)malononitril (30) zu erhalten, fĂŒhrte zu dem Rutheniumvinylidenkomplex [Ru(bdmpza)Cl(═C═CH(PCN))-(PPh3)] (PCN = Pentacenonbasiertes Tetracyanoderivat) (31). Charakteristisch ist die FarbintensitĂ€t der Verbindung in Lösung, welche stark an Allenylidenkomplexe erinnert und sich vermutlich auf den starken Push-Pull-Charakter der Cyanosubstituenten in Verbindung mit der Vinylideneinheit zurĂŒckfĂŒhren lĂ€sst. FĂŒr Vergleichszwecke und mögliche katalytische Anwendungen wurden die 16-VE-Rutheniumallenylidenkomplexe [RuCl2(═C═C═(FN))-(PPh3)2] (45), [RuCl2(═C═C═(AO))(PPh3)2] (46) und [RuCl2(═C═C═(PCO))(PPh3)2] (47) dargestellt. Jedoch zeigen diese drei Komplexe in Lösung die Tendenz zu dimerisieren und eine Mischung aus einem neutralen und kationischen 18-VE-Komplex zu bilden, was diese fĂŒr weitere Anwendungen unattraktiv macht. Die Arbeit befasst sich im anschließenden Kapitel mit Rutheniumkumulenylidenkomplexen, die eine Exfoliation von beispielsweise Kohlenstoffnanoröhren oder Graphenmonolagen erlauben soll. Hierzu wurden zunĂ€chst die beiden Rutheniumvinylidenkomplexe [Ru(bdmpza)Cl(═C═CH(6-Methoxynaphthalen))(PPh3)] (48) und [Ru(bdmpza)Cl-(═C═CH(Pyr))(PPh3)] (49) dargestellt. Obwohl Komplexe 48 und 49 bemerkenswerte StabilitĂ€t fĂŒr Vinylidenkomplexe zeigen, erfolgt eine Zersetzung durch Sauerstoff in Lösung innerhalb weniger Tage. Um diesen Nachteil zu umgehen, sollte im Folgenden die Synthese von pyrenbasierten Allenylidenkomplexen untersucht werden. Hierzu wurde zunĂ€chst, ausgehend von Pyrenophenon, (50) der Propargylalkohol 1-Phenyl-1-(pyren-1-yl)prop-2-in-1-ol (51) dargestellt. Der zugehörige Allenylidenkomplex [Ru(bdmpza)Cl(═C═C═C(PhPyr))(PPh3)] (54A/54B) wurde isoliert und zeigt Absorptionsspektren Ă€hnlich derer des phenylbasierten Allenylidenkomplexes [Ru(bdmpza)Cl(═C═C═CPh2)(PPh3)]. Dies verdeutlicht, dass keine Konjugation zwischen dem Pyrensubstituenten und der Allenylideneinheit erfolgt. Um die Löslichkeit in polaren, protischen Lösungsmitteln zu steigern, wurde der Austausch des PPh3-Liganden durch den PTA-Liganden untersucht. Zwar waren die Allenylidenkomplexe [Ru(bdmpza)Cl(═C═C═(FN))(PTA)] (57A) und [Ru(bdmpza)Cl(═C═C═C(PhPyr))(PTA)] (58A), ausgehend von [Ru(bdmpza)Cl(PTA)(PPh3)] (55), in sehr schlechter Ausbeute darstellbar, jedoch zeigten beide Komplexe 57A und 58A eine schnelle Zersetzung in Lösung. In zukĂŒnftigen Arbeiten sollten daher Untersuchungen zu möglichen nicht-kovalenten Funktionalisierungen von Kohlenstoffallotropen, insbesondere mit dem Komplex 54A/54B, durchgefĂŒhrt werden. Im letzten Kapitel dieser Arbeit wurde die intramolekulare Scholl-Reaktion von Pyrenophenon (50) detailliert betrachtet. Im Gegensatz zu den bisherigen Veröffentlichungen konnte das Reaktionsprodukt durch eine Röntgenstrukturanalyse als 11H-indeno[2,1-a]pyren-11-on (64) identifiziert werden. ZusĂ€tzlich konnte ein mögliches Intermediat in Form des reduzierten 6,6a-Dihydro-11H-indeno[2,1-a]pyren-11-on (63) isoliert werden. Derzeit werden Berechnungen von C. WICK aus der Arbeitsgruppe von T. CLARK durchgefĂŒhrt, die zur AufklĂ€rung des Mechanismus beitragen sollen, da sowohl der Arenium-Kationen Mechanismus als auch ein radikalischer Mechanismus denkbar ist

    Ruthenium Carbonyl Complexes Bearing Bis(pyrazol-1-yl)carboxylato Ligands

    No full text
    The syntheses of the two dicarbonyl complexes [Ru­(bdmpza)­Cl­(CO)<sub>2</sub>] (<b>3</b>) and [Ru­(2,2-bdmpzp)­Cl­(CO)<sub>2</sub>] (<b>4</b>), bearing a bis­(3,5-dimethylpyrazol-1-yl)­acetato (bdmpza) or a 2,2-bis­(3,5-dimethylpyrazol-1-yl)­propionato (2,2-bdmpzp) scorpionate ligand, are described. Both complexes are obtained by reacting the polymer [RuCl<sub>2</sub>(CO)<sub>2</sub>]<sub><i>n</i></sub> with either K­[bdmpza] or K­[2,2-bdmpzp]. Reaction of the acid Hbdmpza with [Ru<sub>3</sub>(CO)<sub>12</sub>] results in the formation of two structural isomers of a hydrido complex, [Ru­(bdmpza)­H­(CO)<sub>2</sub>] (<b>5a</b>,<b>b</b>). Under aerobic conditions conversion of [Ru­(bdmpza)­H­(CO)<sub>2</sub>] (<b>5a</b>,<b>b</b>) to form the Ru­(I) dimer [Ru­(bdmpza)­(CO)­(Ό-CO)]<sub>2</sub> (<b>6</b>) seems to be hindered in comparison to the case for the η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub> (Cp) analogues. Dimer <b>6</b> is obtained via a reaction of Hbdmpza with <i>catena</i>-[Ru­(OAc)­(CO)<sub>2</sub>]<sub><i>n</i></sub> instead. The molecular structures of <b>3</b>, <b>4</b>, and <b>6</b> have been obtained by single-crystal X-ray structure determinations. The precatalytic properties of the two dicarbonyl complexes <b>3</b> and <b>4</b> toward the catalytic oxidation of cyclohexene with different oxidizing agents are discussed as well

    Ruthenium Carbonyl Complexes Bearing Bis(pyrazol-1-yl)carboxylato Ligands

    No full text
    The syntheses of the two dicarbonyl complexes [Ru­(bdmpza)­Cl­(CO)<sub>2</sub>] (<b>3</b>) and [Ru­(2,2-bdmpzp)­Cl­(CO)<sub>2</sub>] (<b>4</b>), bearing a bis­(3,5-dimethylpyrazol-1-yl)­acetato (bdmpza) or a 2,2-bis­(3,5-dimethylpyrazol-1-yl)­propionato (2,2-bdmpzp) scorpionate ligand, are described. Both complexes are obtained by reacting the polymer [RuCl<sub>2</sub>(CO)<sub>2</sub>]<sub><i>n</i></sub> with either K­[bdmpza] or K­[2,2-bdmpzp]. Reaction of the acid Hbdmpza with [Ru<sub>3</sub>(CO)<sub>12</sub>] results in the formation of two structural isomers of a hydrido complex, [Ru­(bdmpza)­H­(CO)<sub>2</sub>] (<b>5a</b>,<b>b</b>). Under aerobic conditions conversion of [Ru­(bdmpza)­H­(CO)<sub>2</sub>] (<b>5a</b>,<b>b</b>) to form the Ru­(I) dimer [Ru­(bdmpza)­(CO)­(Ό-CO)]<sub>2</sub> (<b>6</b>) seems to be hindered in comparison to the case for the η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub> (Cp) analogues. Dimer <b>6</b> is obtained via a reaction of Hbdmpza with <i>catena</i>-[Ru­(OAc)­(CO)<sub>2</sub>]<sub><i>n</i></sub> instead. The molecular structures of <b>3</b>, <b>4</b>, and <b>6</b> have been obtained by single-crystal X-ray structure determinations. The precatalytic properties of the two dicarbonyl complexes <b>3</b> and <b>4</b> toward the catalytic oxidation of cyclohexene with different oxidizing agents are discussed as well

    Efficient conversion of alkenes to chlorohydrins by a Ru-based artificial enzyme.

    No full text
    International audienceArtificial enzymes are required to catalyse non-natural reactions. Here, a hybrid catalyst was developed by embedding a novel Ru complex in the transport protein NikA. The protein scaffold activates the bound Ru complex to produce a catalyst with high regio- and stereo-selectivity. The hybrid efficiently and stably produced α-hydroxy-ÎČ-chloro chlorohydrins from alkenes (up to 180 TON with a TOF of 1050 h−1)

    Safety and Effectiveness of the New Generation APERIOÂź Hybrid Stent-retriever Device in Large Vessel Occlusion Stroke

    No full text
    Background It is unknown whether technological advancement of stent-retriever devices influences typical observational indicators of safety or effectiveness. Methods Observational retrospective study of APERIOÂź (AP) vs. new generation APERIOÂź Hybrid (APH) (AcandisÂź, Pforzheim, Germany) stent-retriever device (01/2019–09/2020) for mechanical thrombectomy (MT) in large vessel occlusion (LVO) stroke. Primary effectiveness endpoint was successful recanalization eTICI (expanded Thrombolysis In Cerebral Ischemia) ≄ 2b67, primary safety endpoint was occurrence of hemorrhagic complications after MT. Secondary outcome measures were time from groin puncture to first pass and successful reperfusion, and the total number of passes needed to achieve the final recanalization result. Results A total of 298 patients with LVO stroke who were treated by MT matched the inclusion criteria: 148 patients (49.7%) treated with AP vs. 150 patients (50.3%) treated with new generation APH. Successful recanalization was not statistically different between both groups: 75.7% for AP vs. 79.3% for APH; p = 0.450. Postinterventional hemorrhagic complications and particularly subarachnoid hemorrhage as the entity possibly associated with stent-retriever device type was significantly less frequent in the group treated with the APH: 29.7% for AP and 16.0% for APH; p = 0.005; however, rates of symptomatic hemorrhage with clinical deterioration and in domo mortality were not statistically different. Neither the median number of stent-retriever passages needed to achieve final recanalization, time from groin puncture to first pass, time from groin puncture to final recanalization nor the number of cases in which successful recanalization could only be achieved by using a different stent-retriever as bail-out device differed between both groups. Conclusion In the specific example of the APERIOÂź stent-retriever device, we observed that further technological developments of the new generation device were not associated with disadvantages with respect to typical observational indicators of safety or effectiveness

    Carbon-rich cyclopentadienyl ruthenium allenylidene complexes

    Get PDF
    Ruthenium allenylidene complexes with carbon-rich polyaromatic moieties have been synthesized by using [RuCl(η5-C5H5)(PPh3)2] (η5-C5H5 = cyclopentadienyl) as a precursor and the propargyl alcohols 10-ethynyl-10-hydroxyanthracen-9-one (ACO), 13-ethynyl-13-hydroxypentacen-6-one (PCO), 1-phenyl-1-(pyren-1-yl)prop-2-yn-1-ol (PyrPh), 9-ethynyl-9H-fluoren-9-ol (FN) and 6-ethynyl-6H-benzo[cd]pyren-6-ol (BPyr) as ligands. The resulting cationic allenylidene complexes, [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash](AO))(PPh3)2]PF6 (1), [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash](PCO))(PPh3)2]PF6 (2), [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash](PyrPh))(PPh3)2]PF6 (3), [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash](FN))(PPh3)2]PF6 (4), and [Ru(η5-C5H5)([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash](BPyr))(PPh3)2]PF6 (5) show interesting intermolecular π-interactions in the solid-state structure as well as solution state complexation with pyrene (documented by Job's plots experiments). CV data indicate possible Ru(II)/Ru(III) oxidation, as well as the potential reduction of the carbon-rich allenylidene moiety

    Immune cells invade the collateral circulation during human stroke: prospective replication and extension

    No full text
    It remains unclear if principal components of the local cerebral stroke immune response can be reliably and reproducibly observed in patients with acute large-vessel-occlusion (LVO) stroke. We prospectively studied a large independent cohort of n = 318 consecutive LVO stroke patients undergoing mechanical thrombectomy during which cerebral blood samples from within the occluded anterior circulation and systemic control samples from the ipsilateral cervical internal carotid artery were obtained. An extensive protocol was applied to homogenize the patient cohort and to standardize the procedural steps of endovascular sample collection, sample processing, and laboratory analyses. N = 58 patients met all inclusion criteria. (1) Mean total leukocyte counts were significantly higher within the occluded ischemic cerebral vasculature (I) vs. intraindividual systemic controls (S): +9.6%, I: 8114/”L ± 529 vs. S: 7406/”L ± 468, p = 0.0125. (2) This increase was driven by neutrophils: +12.1%, I: 7197/”L ± 510 vs. S: 6420/”L ± 438, p = 0.0022. Leukocyte influx was associated with (3) reduced retrograde collateral flow (R2^2 = 0.09696, p = 0.0373) and (4) greater infarct extent (R2^2 = 0.08382, p = 0.032). Despite LVO, leukocytes invade the occluded territory via retrograde collateral pathways early during ischemia, likely compromising cerebral hemodynamics and tissue integrity. This inflammatory response can be reliably observed in human stroke by harvesting immune cells from the occluded cerebral vascular compartment

    Immune Cells Invade the Collateral Circulation during Human Stroke: Prospective Replication and Extension

    No full text
    It remains unclear if principal components of the local cerebral stroke immune response can be reliably and reproducibly observed in patients with acute large-vessel-occlusion (LVO) stroke. We prospectively studied a large independent cohort of n = 318 consecutive LVO stroke patients undergoing mechanical thrombectomy during which cerebral blood samples from within the occluded anterior circulation and systemic control samples from the ipsilateral cervical internal carotid artery were obtained. An extensive protocol was applied to homogenize the patient cohort and to standardize the procedural steps of endovascular sample collection, sample processing, and laboratory analyses. N = 58 patients met all inclusion criteria. (1) Mean total leukocyte counts were significantly higher within the occluded ischemic cerebral vasculature (I) vs. intraindividual systemic controls (S): +9.6%, I: 8114/”L ± 529 vs. S: 7406/”L ± 468, p = 0.0125. (2) This increase was driven by neutrophils: +12.1%, I: 7197/”L ± 510 vs. S: 6420/”L ± 438, p = 0.0022. Leukocyte influx was associated with (3) reduced retrograde collateral flow (R2 = 0.09696, p = 0.0373) and (4) greater infarct extent (R2 = 0.08382, p = 0.032). Despite LVO, leukocytes invade the occluded territory via retrograde collateral pathways early during ischemia, likely compromising cerebral hemodynamics and tissue integrity. This inflammatory response can be reliably observed in human stroke by harvesting immune cells from the occluded cerebral vascular compartment
    corecore