189 research outputs found
Spin-wave spectrum of a two-dimensional itinerant electron system: Analytic results for the incommensurate spiral phase in the strong-coupling limit
We study the zero-temperature spin fluctuations of a two-dimensional
itinerant-electron system with an incommensurate magnetic ground state
described by a single-band Hubbard Hamiltonian. We introduce the
(broken-symmetry) magnetic phase at the mean-field (Hartree-Fock) level through
a \emph{spiral spin configuration} with characteristic wave vector
\gmathbf{Q} different in general from the antiferromagnetic wave vector
\gmathbf{Q_{AF}}, and consider spin fluctuations over and above it within the
electronic random-phase (RPA) approximation. We obtain a \emph{closed} system
of equations for the generalized wave vector and frequency dependent
susceptibilities, which are equivalent to the ones reported recently by Brenig.
We obtain, in addition, analytic results for the spin-wave dispersion relation
in the strong-coupling limit of the Hubbard Hamiltonian and find that at finite
doping the spin-wave dispersion relation has a \emph{hybrid form} between that
associated with the (localized) Heisenberg model and that associated with the
(long-range) RKKY exchange interaction. We also find an instability of the
spin-wave spectrum in a finite region about the center of the Brillouin zone,
which signals a physical instability toward a different spin- or, possibly,
charge-ordered phase, as, for example, the stripe structures observed in the
high-Tc materials. We expect, however, on physical grounds that for wave
vectors external to this region the spin-wave spectrum that we have determined
should survive consideration of more sophisticated mean-field solutions.Comment: 30 pages, 4 eps figure
Dynamical excitonic effects in metals and semiconductors
The dynamics of an electron--hole pair induced by the time--dependent
screened Coulomb interaction is discussed. In contrast to the case where the
static electron--hole interaction is considered we demonstrate the occurrence
of important dynamical excitonic effects in the solution of the Bethe--Salpeter
equation.This is illustrated in the calculated absorption spectra of noble
metals (copper and silver) and silicon. Dynamical corrections strongly affect
the spectra, partially canceling dynamical self--energy effects and leading to
good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let
Range-separated density-functional theory with random phase approximation: detailed formalism and illustrative applications
Using Green-function many-body theory, we present the details of a formally
exact adiabatic-connection fluctuation-dissipation density-functional theory
based on range separation, which was sketched in Toulouse, Gerber, Jansen,
Savin and Angyan, Phys. Rev. Lett. 102, 096404 (2009). Range-separated
density-functional theory approaches combining short-range density functional
approximations with long-range random phase approximations (RPA) are then
obtained as well-identified approximations on the long-range Green-function
self-energy. Range-separated RPA-type schemes with or without long-range
Hartree-Fock exchange response kernel are assessed on rare-gas and
alkaline-earth dimers, and compared to range-separated second-order
perturbation theory and range-separated coupled-cluster theory.Comment: 15 pages, 3 figures, 2 table
Magnetic Field Effect on the Pseudogap Temperature within Precursor Superconductivity
We determine the magnetic field dependence of the pseudogap closing
temperature T* within a precursor superconductivity scenario. Detailed
calculations with an anisotropic attractive Hubbard model account for a
recently determined experimental relation in BSCCO between the pseudogap
closing field and the pseudogap temperature at zero field, as well as for the
weak initial dependence of T* at low fields. Our results indicate that the
available experimental data are fully compatible with a superconducting origin
of the pseudogap in cuprate superconductors.Comment: 4 pages, 3 figure
On the correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase
The Hubbard model with finite on-site repulsion U is studied via the
functional-integral formulation of the four-slave-boson approach by Kotliar and
Ruckenstein. It is shown that a correct treatment of the continuum imaginary
time limit (which is required by the very definition of the functional
integral) modifies the free energy when fluctuation (1/N) corrections beyond
mean-field are considered. Our analysis requires us to suitably interpret the
Kotliar and Ruckenstein choice for the bosonic hopping operator and to abandon
the commonly used normal-ordering prescription, in order to obtain meaningful
fluctuation corrections. In this way we recover the exact solution at U=0 not
only at the mean-field level but also at the next order in 1/N. In addition, we
consider alternative choices for the bosonic hopping operator and test them
numerically for a simple two-site model for which the exact solution is readily
available for any U. We also discuss how the 1/N expansion can be formally
generalized to the four-slave-boson approach, and provide a simplified
prescription to obtain the additional terms in the free energy which result at
the order 1/N from the correct continuum limit.Comment: Changes: Printing problems (due to non-standard macros) have been
removed, 44 page
Approximations for many-body Green's functions: insights from the fundamental equations
Several widely used methods for the calculation of band structures and photo
emission spectra, such as the GW approximation, rely on Many-Body Perturbation
Theory. They can be obtained by iterating a set of functional differential
equations relating the one-particle Green's function to its functional
derivative with respect to an external perturbing potential. In the present
work we apply a linear response expansion in order to obtain insights in
various approximations for Green's functions calculations. The expansion leads
to an effective screening, while keeping the effects of the interaction to all
orders. In order to study various aspects of the resulting equations we
discretize them, and retain only one point in space, spin, and time for all
variables. Within this one-point model we obtain an explicit solution for the
Green's function, which allows us to explore the structure of the general
family of solutions, and to determine the specific solution that corresponds to
the physical one. Moreover we analyze the performances of established
approaches like over the whole range of interaction strength, and we
explore alternative approximations. Finally we link certain approximations for
the exact solution to the corresponding manipulations for the differential
equation which produce them. This link is crucial in view of a generalization
of our findings to the real (multidimensional functional) case where only the
differential equation is known.Comment: 17 pages, 7 figure
Effects of density imbalance on the BCS-BEC crossover in semiconductor electron-hole bilayers
We study the occurrence of excitonic superfluidity in electron-hole bilayers
at zero temperature. We not only identify the crossover in the phase diagram
from the BCS limit of overlapping pairs to the BEC limit of non-overlapping
tightly-bound pairs but also, by varying the electron and hole densities
independently, we can analyze a number of phases that occur mainly in the
crossover region. With different electron and hole effective masses, the phase
diagram is asymmetric with respect to excess electron or hole densities. We
propose as the criterion for the onset of superfluidity, the jump of the
electron and hole chemical potentials when their densities cross.Comment: 4 pages, 3 figure
Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas
Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold
trapped Fermi gas are reported for several couplings at Tc, and extensively
analyzed in terms of a pairing-fluctuation theory. We map the evolution of a
strongly interacting Fermi gas from the pseudogap phase into a fully gapped
molecular Bose gas as a function of the interaction strength, which is marked
by a rapid disappearance of a remnant Fermi surface in the single-particle
dispersion. We also show that our theory of a pseudogap phase is consistent
with a recent experimental observation as well as with Quantum Monte Carlo data
of thermodynamic quantities of a unitary Fermi gas above Tc.Comment: 9 pages, 9 figures. Substantially revised version (to appear in Phys.
Rev. Lett.
The Josephson effect throughout the BCS-BEC crossover
We study the stationary Josephson effect for neutral fermions across the
BCS-BEC crossover, by solving numerically the Bogoliubov-de Gennes equations at
zero temperature. The Josephson current is found to be considerably enhanced
for all barriers at about unitarity. For vanishing barrier, the Josephson
critical current approaches the Landau limiting value which, depending on the
coupling, is determined by either pair-breaking or sound-mode excitations. In
the coupling range from the BCS limit to unitarity, a procedure is proposed to
extract the pairing gap from the Landau limiting current.Comment: 4 pages, 3 figures; improved version to appear in Phys. Rev. Let
Optical excitations in organic molecules, clusters and defects studied by first-principles Green's function methods
Spectroscopic and optical properties of nanosystems and point defects are
discussed within the framework of Green's function methods. We use an approach
based on evaluating the self-energy in the so-called GW approximation and
solving the Bethe-Salpeter equation in the space of single-particle
transitions. Plasmon-pole models or numerical energy integration, which have
been used in most of the previous GW calculations, are not used. Fourier
transforms of the dielectric function are also avoided. This approach is
applied to benzene, naphthalene, passivated silicon clusters (containing more
than one hundred atoms), and the F center in LiCl. In the latter, excitonic
effects and the defect line are identified in the energy-resolved
dielectric function. We also compare optical spectra obtained by solving the
Bethe-Salpeter equation and by using time-dependent density functional theory
in the local, adiabatic approximation. From this comparison, we conclude that
both methods give similar predictions for optical excitations in benzene and
naphthalene, but they differ in the spectra of small silicon clusters. As
cluster size increases, both methods predict very low cross section for
photoabsorption in the optical and near ultra-violet ranges. For the larger
clusters, the computed cross section shows a slow increase as function of
photon frequency. Ionization potentials and electron affinities of molecules
and clusters are also calculated.Comment: 9 figures, 5 tables, to appear in Phys. Rev. B, 200
- …
