169 research outputs found

    Equation for the superfluid gap obtained by coarse graining the Bogoliubov-de Gennes equations throughout the BCS-BEC crossover

    Full text link
    We derive a nonlinear differential equation for the gap parameter of a superfluid Fermi system by performing a suitable coarse graining of the Bogoliubov-de Gennes (BdG) equations throughout the BCS-BEC crossover, with the aim of replacing the time-consuming solution of the original BdG equations by the simpler solution of this novel equation. We perform a favorable numerical test on the validity of this new equation over most of the temperature-coupling phase diagram, by an explicit comparison with the full solution of the original BdG equations for an isolated vortex. We also show that the new equation reduces both to the Ginzburg-Landau equation for Cooper pairs in weak coupling close to the critical temperature and to the Gross-Pitaevskii equation for composite bosons in strong coupling at low temperature.Comment: 12 pages, 8 figure

    Systematic investigation of the effects of disorder at the lowest order throughout the BCS-BEC crossover

    Get PDF
    A systematic investigation of the effects of disorder on the BCS-BEC crossover at the lowest order in the impurity potential is presented for the normal phase above the critical temperature Tc. Starting with the t-matrix approach for the clean system, by which pairing correlations between opposite-spin fermions evolve from the weak-coupling (BCS) to the strong-coupling (BEC) limits by increasing the strength of the attractive inter-particle interaction, all possible diagrammatic processes are considered where the effects of a disordered potential are retained in the self-energy at the lowest order. An accurate numerical investigation is carried out for all these diagrammatic terms, to determine which of them are mostly important throughout the BCS-BEC crossover. Explicit calculations for the values of Tc, the chemical potential, and the Tan's contact are carried out. In addition, the effect of disorder on the single-particle spectral function is analyzed, and a correlation is found between an increase of Tc and a widening of the pseudo-gap energy at Tc on the BCS side of unitarity in the presence of disorder, while on the BEC side of unitarity the presence of disorder favors the collapse of the underlying Fermi surface. The present investigation is meant to orient future studies when the effects of disorder will be considered at higher orders, with the purpose of limiting the proliferation of diagrammatic terms in which interaction and disorder are considered simultaneously.Comment: 20 pages, 21 figure

    Spin-wave spectrum of a two-dimensional itinerant electron system: Analytic results for the incommensurate spiral phase in the strong-coupling limit

    Full text link
    We study the zero-temperature spin fluctuations of a two-dimensional itinerant-electron system with an incommensurate magnetic ground state described by a single-band Hubbard Hamiltonian. We introduce the (broken-symmetry) magnetic phase at the mean-field (Hartree-Fock) level through a \emph{spiral spin configuration} with characteristic wave vector \gmathbf{Q} different in general from the antiferromagnetic wave vector \gmathbf{Q_{AF}}, and consider spin fluctuations over and above it within the electronic random-phase (RPA) approximation. We obtain a \emph{closed} system of equations for the generalized wave vector and frequency dependent susceptibilities, which are equivalent to the ones reported recently by Brenig. We obtain, in addition, analytic results for the spin-wave dispersion relation in the strong-coupling limit of the Hubbard Hamiltonian and find that at finite doping the spin-wave dispersion relation has a \emph{hybrid form} between that associated with the (localized) Heisenberg model and that associated with the (long-range) RKKY exchange interaction. We also find an instability of the spin-wave spectrum in a finite region about the center of the Brillouin zone, which signals a physical instability toward a different spin- or, possibly, charge-ordered phase, as, for example, the stripe structures observed in the high-Tc materials. We expect, however, on physical grounds that for wave vectors external to this region the spin-wave spectrum that we have determined should survive consideration of more sophisticated mean-field solutions.Comment: 30 pages, 4 eps figure

    From superconducting fluctuations to the bosonic limit in the response functions above the critical temperature

    Full text link
    We investigate the density, current, and spin response functions above the critical temperature for a system of three-dimensional fermions interacting via an attractive short-range potential. In the strong-coupling (bosonic) limit of this interaction, we identify the dominant diagrammatic contributions for a ``dilute'' system of composite bosons which form as bound-fermion pairs, and compare them with the usual (Aslamazov-Larkin, Maki-Thompson, and density-of-states) terms occurring in the theory of superconducting fluctuations above the critical temperature for a clean system in the weak-coupling limit. We show that, at the zeroth order in the diluteness parameter for the composite bosons, the Aslamazov-Larkin term still represents formally the dominant contribution to the density and current response functions, while the Maki-Thompson and density-of-states terms are strongly suppressed. Corrections to the Aslamazov-Larkin term are then considered at the next order in the diluteness parameter for the composite bosons. The spin response function is also examined, and it is found to be exponentially suppressed in the bosonic limit only when appropriate sets of diagrams are considered simultaneously.Comment: 10 pages, 6 figure

    Density and spin response of a strongly-interacting Fermi gas in the attractive and quasi-repulsive regime

    Get PDF
    Recent experimental advances in ultra-cold Fermi gases allow for exploring response functions under different dynamical conditions. In particular, the issue of obtaining a "quasi-repulsive" regime starting from a Fermi gas with an attractive inter-particle interaction while avoiding the formation of the two-body bound state is currently debated. Here, we provide a calculation of the density and spin response for a wide range of temperature and coupling both in the attractive and quasi-repulsive regime, whereby the system is assumed to evolve non-adiabatically toward the "upper branch" of the Fermi gas. A comparison is made with the available experimental data for these two quantities.Comment: 8 pages, 7 figures, to appear on Phys. Rev. Let

    Temperature dependence of a vortex in a superfluid Fermi gas

    Full text link
    The temperature dependence of an isolated quantum vortex, embedded in an otherwise homogeneous fermionic superfluid of infinite extent, is determined via the Bogoliubov-de Gennes (BdG) equations across the BCS-BEC crossover. Emphasis is given to the BCS side of this crossover, where it is physically relevant to extend this study up to the critical temperature for the loss of the superfluid phase, such that the size of the vortex increases without bound. To this end, two novel techniques are introduced. The first one solves the BdG equations with "free boundary conditions", which allows one to determine with high accuracy how the vortex profile matches its asymptotic value at a large distance from the center, thus avoiding a common practice of constraining the vortex in a cylinder with infinite walls. The second one improves on the regularization procedure of the self-consistent gap equation when the inter-particle interaction is of the contact type, and permits to considerably reduce the time needed for its numerical integration, by drawing elements from the derivation of the Gross-Pitaevskii equation for composite bosons starting from the BdG equations.Comment: 18 pgaes, 16 figure

    Size shrinking of composite bosons for increasing density in the BCS to Bose-Einstein crossover

    Full text link
    We consider a system of fermions in the continuum case at zero temperature, in the strong-coupling limit of a short-range attraction when composite bosons form as bound-fermion pairs. We examine the density dependence of the size of the composite bosons at leading order in the density ("dilute limit"), and show on general physical grounds that this size should decrease with increasing density, both in three and two dimensions. We then compare with the analytic zero-temperature mean-field solution, which indeed exhibits the size shrinking of the composite bosons both in three and two dimensions. We argue, nonetheless, that the two-dimensional mean-field solution is not consistent with our general result in the "dilute limit", to the extent that mean field treats the scattering between composite bosons in the Born approximation which is known to break down at low energy in two dimensions.Comment: Revised version to be published on Eur. Phys. Jour. B, 7 pages, 1 figur

    Extracting the condensate density from projection experiments with Fermi gases

    Full text link
    A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the BEC sides, thus ``projecting'' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of mean field.Comment: 4 pages, 4 figure

    Trapped fermions with density imbalance in the BEC limit

    Full text link
    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the BEC limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atomsComment: 5 pages, 4 figure
    • …
    corecore