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A systematic investigation of the effects of disorder on the BCS-BEC crossover at the lowest order in the
impurity potential is presented for the normal phase above the critical temperature Tc. Starting with the t-matrix
approach for the clean system, by which pairing correlations between opposite-spin fermions evolve from the
weak-coupling (BCS) to the strong-coupling (BEC) limits by increasing the strength of the attractive interparticle
interaction, all possible diagrammatic processes are considered where the effects of a disordered potential are
retained in the self-energy at the lowest order. An accurate numerical investigation is carried out for all these
diagrammatic terms, to determine which of them are mostly important throughout the BCS-BEC crossover.
Explicit calculations for the values of Tc, the chemical potential, and the Tan’s contact are carried out. In addition,
the effect of disorder on the single-particle spectral function is analyzed, and a correlation is found between an
increase of Tc and a widening of the pseudogap energy at Tc on the BCS side of unitarity in the presence of
disorder, while on the BEC side of unitarity the presence of disorder favors the collapse of the underlying Fermi
surface. The present investigation is meant to orient future studies when the effects of disorder will be considered
at higher orders, with the purpose of limiting the proliferation of diagrammatic terms in which interaction and
disorder are considered simultaneously.
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I. INTRODUCTION

The interplay between interaction and disorder has long
been of interest in condensed-matter physics, especially in
the context of the metal-insulator transition. Its theoretical
treatments have proved highly nontrivial and require the
use of rather sophisticated field-theoretical and diagrammatic
methods.1,2 Pioneering work in this sense was done in
Refs. 3 and 4. Simplifying assumptions used in that context
rested on the presence of a “large” Fermi surface (related to
the underlying Fermi-liquid description of metals5) and on
addressing mostly “universal” properties, which are related to
critical phenomena and for which the system details that are
poorly under control are not fully relevant.

More recently, ultracold Fermi gases have opened the
possibility of performing an accurate experimental control
of the system parameters, specifically of the interparticle
interaction (that can be varied almost at will via the use of
Fano-Feshbach resonances) and of the external potential in
which the atoms are embedded (via suitable arrangements
of laser fields).6 In general, Fermi as well as Bose ultracold
gases are then regarded as “quantum simulators,” which allow
one to realize a variety of models that would otherwise defy
an accurate control with more conventional condensed-matter
systems.

For these reasons, interest has risen in exploiting ultracold
gases to address problems that have remained unaccomplished
with more conventional disordered materials, like the oc-
currence of the Anderson localization due to disorder when
the interparticle interaction is artificially switched off both
in Bose7,8 and in Fermi9 systems, or even the emergence of
the coherent backscattering for weaker disorder.10 At present,
experimental interest is rising to study the interplay between

disorder and interaction in the context of the BCS-BEC
crossover, whereby the pairing correlations due to the attractive
interparticle interaction can be varied in a continuous fashion
from weak to strong coupling. Questions like the localization
of a Cooper pair as a whole, or its disruption by disorder that
would localize the two fermions independently, are of much
interest also for disordered superconductors.11 In addition, an
advantage of an attractive interaction over a repulsive one is
that it cannot lead by itself to localization effects in the absence
of disorder.

Despite the considerable experimental efforts devoted to the
problem, there appear to be limited theoretical achievements
thus far in exploring the interplay of disorder and interaction
throughout the BCS-BEC crossover. These include the work of
Ref. 12, where the effects of weak disorder on the BCS-BEC
crossover were considered at low temperature in the superfluid
phase using a functional integral with a Gaussian action for
the bosonic fluctuations over and above the BCS mean field, as
well as the work of Ref. 13, that addressed the value of critical
temperature Tc for the superfluid transition from the normal
phase in the presence of weak disorder across the BCS-BEC
crossover, also using a functional integral formulation. In both
these references, diagrammatic processes were not explicitly
identified at the fermionic level, a practice that would instead
help one to describe the physical processes where disorder and
interaction act at the same time, as well as the way they evolve
from the weak- (BCS) to the strong- (BEC) coupling limits.

The purpose of the present work is to study in a systematic
way how a system of fermions with strong pairing correlations,
which evolves throughout the BCS-BEC crossover, is affected
by the presence of disorder when this is treated at the lowest
significant order. This will be done by identifying all possible
diagrammatic processes through which the disorder affects
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directly the fermionic single-particle self-energy, whereby the
interparticle interaction is treated at the level of the t matrix
that has been extensively used to describe the BCS-BEC
crossover for a clean system in the normal phase.14,15 All
these self-energy diagrams will be calculated numerically
from weak to strong coupling, and their contributions to the
critical temperature and chemical potential will be explicitly
analyzed. In this way, a detailed control will be achieved
on those diagrammatic terms that are not only dominant in
either the weak- or strong-coupling limits (a feature that will
be checked independently by analytic estimates as well), but
also contribute in an appreciable way in the unitary limit of
most interest which is intermediate between the BCS and BEC
limits. By a further comparative analysis of the single-particle
spectral function with and without disorder, an increase of Tc,
that we shall find on the BCS side of unitarity in the presence
of disorder, will be related to a corresponding increase of the
pseudogap energy at Tc.

The main issues addressed in this paper and the key new
physical results can be briefly summarized as follows:

(i) The first main issue is about the role of the underlying
Fermi surface when the scattering by impurities is combined
with an attractive pairing interaction spanning the BCS-BEC
crossover. To this end, standard approximations, which rely
on the presence of a “large” Fermi surface and are commonly
used in the theory of disordered electronic systems, will have
to be abandoned.

(ii) The second main issue stems from the fact that, since
the BCS-BEC crossover has thus far been explicitly realized
with ultracold Fermi gases, the disorder potential should be
suitably modeled to be as close as possible to the experimental
realizations that can be done for these systems. Our choice of
the impurity potential will thus be made in order to adapt this
need to the use of a diagrammatic approach for dealing with
the combined effects of interaction and disorder.

(iii) The third main issue concerns the identification of
a minimal set of relevant physical processes at the level of
the fermionic self-energy, where disorder at the lowest order
is combined with interaction effects at the level of the t

matrix. This will be done through both analytic estimates
that are separately possible in the BCS and BEC limits,
and accurate numerical calculations that cover the whole
BCS-BEC crossover. These processes will, in fact, be the only
ones that should be addressed at higher orders in the disorder
in future work, so as to avoid an unmanageable proliferation of
terms when the disorder will be considered at infinite order (in
terms, e.g., of disorder ladders and/or cross ladders) to reach
eventually the regime where localization effects take place.

(iv) One of the main physical results obtained by the present
analysis is that the existence of an underlying Fermi surface
on the BCS side of unitarity largely protects the system from
the effects of disorder through Pauli blocking which limits
the amount of impurity scattering processes. In this context,
we shall find that disorder can actually favor the occurrence
of pairing correlations, with a simultaneous increase of Tc

and of the Tan’s contact and a widening of the pseudogap
energy. This finding, that holds for an attractive interparticle
interaction, can be regarded to parallel to some extent that of
Ref. 16 for a repulsive interparticle interaction, whereby the

presence of disorder leads to an enhancement of the effects of
the Coulomb repulsion among electrons.

(v) A second important and related physical result is that,
when the Fermi surface eventually collapses on the BEC side
of unitarity and thus it can no longer protect the system from
the effects of disorder, the system becomes essentially bosonic
in nature and thus much more sensitive to the presence of
disorder. This result indicates that the evolution and fate of the
underlying Fermi surface, which is the driving element behind
the BCS-BEC crossover also in the clean case, acquires an
even more marked relevance in the presence of disorder since
this amplifies its effects on the system coherence.

(vi) An additional main physical result is that, in the BEC
limit when composite bosons form out of fermion pairs, a
nice mapping can be established between the diagrammatic
structures for composite bosons which we recover from our
analysis and for pointlike bosons whose internal structure is
immaterial.

For completeness, it is also worth mentioning that a
connection between pairing fluctuations and disordered effects
was also considered at the diagrammatic level in Ref. 17,
albeit with the use of a different pairing theory (that was
built on a quasi-two-dimensional single-band Hamiltonian in
a lattice to make contacts with the physics of the cuprates) but
with essentially no reference to the physics of the BCS-BEC
crossover. For these reasons, not one of the issues and physical
results (i)–(vi) listed above were addressed or discussed in
Ref. 17.

The paper is organized as follows. Section II describes
the diagrammatic approach that we adopt for the BCS-BEC
crossover in the presence of weak disorder, and discusses
the assumptions underlying the treatment of disorder plus
interaction in conventional condensed-matter systems which
are, however, going to break down when departing from
the weak-coupling limit. Analytic results are also reported
in the weak- as well as in the strong-coupling limits. For
the latter, a mapping is further provided to the self-energy
of noninteracting composite bosons in the presence of dis-
order. In Sec. III the numerical calculations for the critical
temperature Tc of the normal-superfluid transition and for the
corresponding chemical potential μ throughout the BCS-BEC
crossover are presented, together with the results for Tan’s
contact which is of special interest to the physics of ultracold
atoms since it includes a number of universal properties of
systems with short-range dynamics.18,19 Section IV addresses
the characterization of the single-particle spectral function
for the relevant fermionic and bosonic excitations in their
respective regimes, and discusses a correlation found between
the increase of Tc and of the pseudogap energy on the BCS
side of unitarity. Section V gives our conclusions and outlines
future lines of research dealing with stronger disorder. The
Appendix reports details on the average over the disorder that
we have adopted.

II. DIAGRAMMATIC APPROACH

A key role in the BCS-BEC crossover is played by the
variation of the chemical potential μ from one limit to the
other, since at zero temperature μ evolves from the value
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FIG. 1. (Color online) Chemical potential μ(0) (full line, left scale)
calculated at the critical temperature T (0)

c (dashed line, right scale)
vs the coupling parameter (kF aF )−1. Both μ(0) and T (0)

c are in units
of EF and are obtained in the absence of disorder using the t-matrix
approximation of Figs. 2(b) and 2(c) (see below).

of the Fermi energy EF = k2
F /(2m) in the extreme BCS

limit of noninteracting fermions, to (minus one-half of) the
value (ma2

F )−1 of the binding energy for the two-fermion
problem in vacuum in the extreme BEC limit of noninteracting
composite bosons. In the process, the underlying Fermi
surface is progressively washed out. A similar behavior occurs
also at finite temperatures T � TF where TF is the Fermi
temperature, as shown in Fig. 1 for temperatures that remain
a fraction of TF . Here, m is the fermion mass, kF = (3π2n)1/3

is the Fermi wave vector where n is the total density (two
equally populated fermion species with ↑ and ↓ spins are
considered throughout), and aF is the scattering length for
the two-fermion problem in vacuum. Correspondingly, the
dimensionless coupling parameter (kF aF )−1 varies from being
� −1 in the BCS limit to being � +1 in the BEC limit, it
vanishes at unitarity, and its magnitude is �1 in the window
where the crossover takes place.

Inclusion of disorder across the BCS-BEC crossover has
thus to take unavoidably into account the progressive disap-
pearance of what was the underlying Fermi surface in the BCS
limit and played a major role in that limit. To highlight how
this effect evolves in practice, we begin by considering the
simplest process through which the impurity potential acts on
a Fermi system.

A. The weak-coupling limit and the role of the Fermi surface

For a system of noninteracting fermions, the self-energy
contribution that takes into account the effect of disorder at
the lowest order is depicted in Fig. 2(a), where the dotted line
with a cross represents the scattering by the impurities.20

The averaging over the impurity configurations is per-
formed as in the Appendix, with a procedure that is mostly
suited to the present diagrammatic approach and where a
Gaussian-correlated (white noise) disorder is recovered only
as a limiting case. The analytic expression associated with the
diagram of Fig. 2(a) then reads (h̄ = 1 throughout):

�2a(k,ωn) =
∫

dp
(2π )3

u(p)2

iωn − (k + p)2/(2m) + μ
, (1)

(c)

(b)

= + + + ...

(a)

FIG. 2. (Color online) Fermionic self-energy diagrams describing
(a) noninteracting fermions affected by disorder at the lowest order;
(b) interacting fermions at the level of the t matrix in the absence
of disorder; (c) t-matrix pair (ladder) propagator �0 for the clean
system. Full, dashed, and dotted lines with a cross represent (bare)
fermion propagators, interparticle potential, and impurity scattering,
respectively.

where k and p are wave vectors, ωn = (2n + 1)πkBT (n
integer) is a fermionic Matsubara frequency (kB being the
Boltzmann constant). Here,

u(p)2 =
{

γ if |p| < p0,

0 otherwise
(2)

represents the (averaged) impurity potential where γ is a
constant and p0 is a wave-vector cutoff (with p0 � kF as
discussed in the Appendix).

The reason to keep a finite (albeit large with respect to kF )
value of p0 is evident when calculating expression (1) in the
BCS limit where μ � EF is the largest energy scale in the
problem, such that mγp0 � EF .21 One obtains for |k| � kF

and |ωn| � EF :

�2a(k,ωn) � − m γ p0

π2
− i γ

(2m)3/2

4π

√
μ sgn(ωn), (3)

where the real part represents an energy shift at the lowest
order in the impurity potential (which would diverge in the
limit p0 → ∞ of a truly Gaussian correlated potential). In the
theory of disordered metals, this term is usually dismissed
as being an irrelevant constant that can be reabsorbed in
a renormalization of the chemical potential.20 This is no
longer possible in the context of the BCS-BEC crossover,
for which the renormalization of the chemical potential is an
essential ingredient of the problem and has thus to be explicitly
considered.

The imaginary part of Eq. (3) can be expressed as
−πγN0 sgn(ωn) in terms of the density of states N0 =
mkF /(2π2) per spin component at the Fermi level. This result
could have been obtained directly from the imaginary part of
expression (1) for which the integral is convergent even when
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p0 → ∞. In this case one can use the standard approximation,5∫
dk

(2π )3
F

(
k2

2m
− μ

)
� N0

∫ +∞

−∞
dξ F (ξ ), (4)

that holds for a smooth function F of ξ (k) = k2/(2m) − μ for
which the integral on the right-hand side is convergent. The
approximate way (4) to calculate the integrals over the wave
vector has systematically been used in the theory of disordered
electronic systems to simplify the calculations, whereby the
presence of an underlying Fermi surface has invariably been
assumed.1,2

This is no longer true for the BCS-BEC crossover already
past unitarity on the BEC side, and the approximation (4) has
consequently to be abandoned. In particular, in the (extreme)
BEC limit where μ/EF → −∞, the value

�2a(k,ωn) � γ p3
0

6π2

1

iωn − ξ (k)
� − γ p3

0

6π2|μ| (5)

of expression (1) becomes irrelevant.
For a generic value of μ intermediate between the BCS and

BEC regimes, expression (1) can be calculated numerically
and the result is reported in Figs. 3(a) and 3(b) for k = 0 and
ωn = 0+. [Here and in all following figures, the value of the
disorder parameter γ is given in terms of the dimensionless
quantity γ̃ = γ m2/(π2kF ).] Also shown in the same figures is
a more refined calculation which treats the fermion propagator
of Fig. 2(a) in a self-consistent way, and which results in a
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FIG. 3. (Color online) Impurity self-energy �2a of Fig. 2(a)
calculated numerically for k = 0 vs the chemical potential μ over an
extended range of the BCS-BEC crossover, with disorder parameter
γ̃ = 0.01. (a) Real and (b) imaginary part of �2a at T = 0 with
ωn = 0+, where full and dashed lines correspond to the non-self-
consistent and self-consistent calculations. In addition, the inset of
panel (b) shows the imaginary part of �2a with ωn = πkBT at
T = 0.1TF , where full and dotted lines correspond to the cases when
the approximation (4) is avoided or adopted in the non-self-consistent
calculation.

smoothing of the cusp near μ = 0. One sees from these plots
that a marked change of behavior occurs at μ = 0 where the
imaginary parts vanishes abruptly, thus resulting in the absence
of any significant scattering by the impurities. Additional
diagrammatic contributions beside that of Fig. 2(a) need thus
to be included to study the effects of disorder on the BCS-BEC
crossover, which we will consider in the following at the lowest
relevant order.

It is interesting to note from Fig. 3(b) that expression (3)
for the self-energy [with a characteristic square-root behavior
of the imaginary part, as expected when the approximation (4)
holds] remains valid provided μ is positive. This is because
in Fig. 3(b) we have reported the results for ωn = 0+ at zero
temperature. The difference between the results obtained by
calculating the (imaginary part of the) self-energy �2a(k,ωn)
without and with the use of approximation (4) becomes
apparent for increasing T , as shown in the inset of Fig. 3(b)
where ωn = πkBT with T = 0.1TF in the non-self-consistent
calculation. This is an additional indication that approxima-
tion (4) cannot be used as soon as departing from the BCS
limit of the crossover.

B. Fermionic pairing self-energy terms
at the lowest order in the disorder

For a clean system, the BCS-BEC crossover can be
described at finite temperature in the normal phase in terms of
the fermionic self-energy of Figs. 2(b) and 2(c).22 The presence
of disorder decorates this diagram in several ways, which are
all reported in Fig. 4 at the lowest order in the disorder.23

A number of considerations can be made for these diagrams
before they are explicitly calculated:

(i) The diagrams in Figs. 4(a) and 4(b) represent crossed
self-energy insertions to the diagrams of Figs. 2(a) and 2(b),
in order.

(ii) Diagrams 4(c) are reminiscent of the corrections to
the Hartree self-energy in the theory of disordered electronic
systems.1,2

(iii) Diagrams 4(d) and 4(e) (which albeit topologically
distinct have the same value when a contact interparticle
interaction is considered) represent processes where disorder
affects the fermionic character of the system. The same can be
said of diagrams 4(f).

(iv) Diagrams 4(g) and 4(h) contain the effect of disorder
through a kind of “bosonic” self-energy insertion to the
ladder propagator �0 (as evidenced in the central part of
the diagrams), which is constructed, however, in terms of
fermionic quantities only.

(v) Diagrams 4(i) and 4(j) (which, again, albeit topologi-
cally distinct have the same value for a contact interparticle
interaction) contain the effect of disorder through a truly
“bosonic” self-energy insertion to the ladder propagator (as
evidenced in the central part of the diagrams), that physically
corresponds to a self-energy insertion for composite bosons
(made up of a fermion pair) in the presence of disorder.

From the above analysis, one expects diagrams 4(c) to be of
importance in the BCS limit, and diagrams 4(i) and 4(j) to be of
importance in the BEC limit. This expectation will be verified
below through analytic estimates of the diagrams in these
limits, and will be checked by accurate numerical calculations
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(a) (b ) (c)

(d)

(e) (f)

(g)

(h) (i) (j)

FIG. 4. (Color online) Fermionic self-energy diagrams in the
presence of disorder built on the t matrix of Figs. 2(b) and 2(c),
where all possible decorations at the lowest order in the disorder have
been inserted. Boxes stand for the ladder propagator �0 of the clean
system, full lines for the bare fermion propagator G0, and dotted lines
with a cross for the impurity scattering.

in Sec. III. Numerical calculations will further be required
to determine the way the diagrams of Fig. 4 contribute to
physical quantities (like the critical temperature and chemical
potential), especially in the unitary region of most interest
which is intermediate between the BCS and BEC limits.

It further turns out that, besides in diagram 4(b), it is
strictly necessary to keep a finite value of the cutoff p0 also in
diagrams 4(g)–4(j). This should be expected, to the extent that
these diagrams contain self-energy insertions of the fermionic
type [in diagrams 4(g)–4(h)] or of the bosonic type in diagrams
4(i) and 4(j)].

By a related argument, one would expect on physical
grounds the decoration at the lowest order in the disorder to be
attributed directly to a self-energy of the bosonic type and not
to diagrams 4(g)–4(j) as a whole, in analogy to what was done
in Fig. 2(a) for the self-energy of the fermionic type. This
implies that these self-energy insertions of the bosonic type
should be resummed to infinite order, so as to replace the bare
ladder �0 by a modified ladder � suitably dressed by disorder.
This resummation is convenient also from a mathematical
point of view because diagrams 4(g)–4(j) as they stand would
diverge in the infrared upon approaching T (0)

c from above,
since they contain two bare ladders �0 with the same wave
vector and frequency.

The numerical calculation of the above diagrams can
be performed with moderate effort in the coupling range
−2 � (kF aF )−1 � +2. It is then relevant to complement the

numerical calculation of the above diagrams with analytic
estimates which can be separately provided in the (extreme)
BCS and BEC limits, that lie outside the above range where
specific simplifying approximations hold. These analytic
estimates are discussed in detail in the next two subsections.

C. Analytic estimates in the strong-coupling (BEC) limit

In the BEC limit where (kF aF )−1 � 1, the fermionic
chemical potential μ is the largest energy scale in the problem
and approaches asymptotically the value −ε0/2 where ε0 =
(maF )−1 is the binding energy of the two-fermion problem
in vacuum. In the present context, we further assume that
|μ| � p2

0/(2m), which corresponds to considering the size
of the composite bosons smaller than the typical correlation
length ∼p−1

0 of the disorder.24

Out of the diagrams drawn in Fig. 4, we explicitly consider
the BEC limit of diagrams 4(i) and 4(j) since they turn out to be
the most important ones in the limit, but also of diagrams 4(h)
since they contain a kind of bosonic self-energy insertion to be
compared with those of diagrams 4(i) and 4(j). [The analytic
estimate of diagram 4(g) is not reported here explicitly since
it turns out to be equivalent to that of diagrams 4(h)].

In addition, we shall consider the BEC limit of dia-
grams 4(c) which will be retained in the final numerical
calculations owing to their relevance in the BCS limit, as
well as of diagrams 4(d) and 4(e) in order to evidence their
fermionic character. [The analytic estimate of diagrams 4(a)
and 4(b) turns out to be equivalent to that of diagrams 4(c), and
the analytic estimate of diagrams 4(f) turns out to be equivalent
to that of diagrams 4(d) and 4(e). Accordingly, they will not
be reported here explicitly.] The above selected diagrams are
redrawn for convenience in Fig. 5, where the internal wave

q−k q−k

qqq

q−k q−k

qqq

q−k’

q+p

q−k’

q−k’ q−k’’

q+p
k’+p k’’+p

k’+p

k+p k’+p

q−k−p

k+p

k’

k’ k’

k’ k’’

(a) (c)

(b) (d)

FIG. 5. (Color online) The four diagrams here reported corre-
spond, in order, to diagrams of Figs. 4(i), 4(h), 4(c), and 4(d), where
the internal wave vectors and frequencies are indicated in four-vector
notation k = (k,ωn) and q = (q,	ν). In addition, p is the wave vector
associated with impurity potential (2).
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vectors and frequencies are also reported in order to identify
and manipulate their analytic expressions.

In the BEC limit, the bare ladder propagator �0(q,	ν) of
Fig. 2(c) with wave vector q and bosonic Matsubara frequency
	ν = 2πkBT ν (ν integer) acquires a polar structure similar to
that of a free-boson propagator,22,25

�0(q,	ν) � −
(

8π

m2aF

)
1

i	ν − q2/(4m) + μB

(6)

with bosonic chemical potential μB = 2μ + ε0. The form (6)
excludes the high-energy contribution of a cut in the complex
frequency plane, which is important to account for the
scattering processes between two composite bosons made up
of fermion pairs in vacuum26 but is irrelevant for the diagrams
we consider in the present context (a feature that we have
also verified numerically). We are therefore going to use the
asymptotic form (6) of �0 in the following estimates.

Since the four diagrams of Figs. 4(i) and 4(j) are all
numerically equal, we have redrawn only one of them in
Fig. 5(a). Upon extracting the bosonic self-energy insertions
(that are evidenced in the central part of the diagrams), we
obtain for their overall analytic contribution

�B
4i−4j (q,	ν)

= 4γ

∫
dk′

(2π )3
kBT

∑
n′

∫
dk′′

(2π )3
kBT

∑
n′′

×G0(k′,ωn′ ) G0(k′′,ωn′′ ) G0(q − k′,	ν − ωn′)

×G0(q − k′′,	ν − ωn′′ )
∫

|p|<p0

dp
(2π )3

G0(k′ + p,ωn′ )

×G0(k′′ + p,ωn′′ ) �0(q + p,	ν), (7)

where G0(k,ωn) = (iωn − ξ (k))−1 is the bare fermionic prop-
agator. By our assumptions, we consider not only |μ| �
p2

0/(2m) but also |μ| � q2/(2m) and |μ| � |	ν | for the
bosonic energy scales of relevance. We can thus neglect the
wave vector p where it appears in a pair of G0, as well as q and
	ν where they appear in a different pair of G0. Expression (7)
then reduces to

�B
4i−4j (q,	ν)

� 4γ

∫
|p|<p0

dp
(2π )3

�0(q + p,	ν)

×
(∫

dk
(2π )3

kBT
∑

n

G0(k,ωn)2 G0(−k, − ωn)

)2

. (8)

With the result∫
dk

(2π )3
kBT

∑
n

G0(k,ωn)2G0(−k, − ωn) � −m2aF

8π
(9)

that holds in the BEC limit (cf., e.g., Ref. 22), we get eventually

−
(

8π

m2aF

)
�B

4i−4j (q,	ν)

� 4γ

∫
|p|<p0

dp
(2π )3

1

i	ν − (p + q)2/(4m) + μB

. (10)

The right-hand side of this expression represents the simplest
self-energy process for noninteracting compositelike bosons

of mass 2m subject to the impurity potential (2), and is the
analog of expression (1) for noninteracting fermions subject
to the same impurity potential. Keeping here also finite values
of the frequency 	ν , we obtain∫

|p|<p0

dp
(2π )3

1

i	ν − (p + q)2/(4m) + μB

� −2mp0

π2
− i

(4m)3/2

4π
Re{

√
μB + i	ν} sgn(	ν)

= −2mp0

π2
+ i

(4m)3/2

4π
Im{

√
−μB − i	ν}. (11)

Note that, through the identity that we have used in the last
line, the result obtained in Ref. 27 in the limit of noninteracting
point bosons in the normal phase is recovered, to the extent
that |Re{√−μB − i	ν}| � p0/(πm1/2) for the relevant range
of frequencies.

Note further that the factor 4 on the right-hand side of
Eq. (10) [which originates from the four distinct diagrams of
Figs. 4(i) and 4(j)] consistently accounts for the presence of
two fermions within a composite boson and for the fact that
the impurity potential enters squared. The factor −8π/(m2aF )
on the left-hand side of Eq. (10) is instead required by the
mapping from the original fermionic diagrammatic structure
to the effective bosonic diagrammatic structure, as it is also
evident from Eq. (6). In this way, we have identified the main
features of the BCS-BEC crossover in the presence of a weak
impurity disorder, following the evolution from noninteracting
fermions in the extreme BCS limit to noninteracting composite
bosons in the extreme BEC limit.

Continuing through our program, we consider (one of) the
diagrams of Fig. 4(h), from which we extract the bosoniclike
self-energy insertion �B

4h appearing in the middle of Fig. 5(b).
Its analytic expression reads

�B
4h(q,	ν) =

∫
dk

(2π )3
kBT

∑
n

G0(k,ωn)2

×G0(q − k,	ν − ωn) �2a(k,ωn) (12)

where �2a is the fermionic self-energy of Fig. 2(a). Neglecting
q and 	ν in the argument of G0, using again the approximate
result (9), and recalling expression (5) for �2a in the BEC
limit, we obtain

−
(

8π

m2aF

)
�B

4h(q,	ν) � − γ p3
0

6π2|μ|

� −mγp0

3π2

(
p0

kF

)2

(kF aF )2, (13)

which is negligible with respect to results (10) and (11) under
the assumption that |μ| � p2

0/(2m).
We next consider (one of) the diagrams of Fig. 4(c) as

redrawn in Fig. 5(c). Its analytic expression reads

�4c(k,ωn)

= −γ

∫
dq

(2π )3
kBT

∑
ν

�0(q,	ν) G0(q − k,	ν − ωn)

×
∫

|p|<p0

dp
(2π )3

G0(k + p,ωn) G0(q − k − p,	ν − ωn).

(14)
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Neglecting p as well as q and 	ν with respect to |μ| in all the
G0, we obtain approximately (η being a positive infinitesimal)

�4c(k,ωn)

� −γ G0(k,ωn) G0(−k,−ωn)2

×
∫

dq
(2π )3

kBT
∑

ν

�0(q,	ν) ei	νη

∫
|p|<p0

dp
(2π )3

� 16

9π3
(mγp0)

(
p0

kF

)2

(kF aF )5, (15)

which is strongly suppressed even with respect to result (5) in
the BEC limit where |μ| = (2ma2

F )−1. To obtain the last line of
Eq. (15) we have made use of the approximate expression (6)
and of the result

nB = −
∫

dq
(2π )3

kBT
∑

ν

ei	νη

i	ν − q2/(4m) + μB

(16)

k+p k+p

q−k q−k

q−k−p

q q

q−k

q−k−p

k+p k+p

q−k

q

q−k−p

q

q−k−p

(a) (b) (c)

FIG. 6. (Color online) The three diagrams here reported corre-
spond, in order, to the diagrams of Figs. 4(a)–4(c), where now the
internal wave vectors and frequencies are also indicated with the
four-vector notation of Fig. 5.

which represents the density of composite bosons such that
nB = n/2.

Finally, it is relevant to estimate the behavior in the BEC
limit of (one of) the diagrams 4(d) as redrawn in Fig. 5(d). We
obtain for temperatures of order Tc

�4d (k,ωn) = −γ

∫
dk′

(2π )3
kBT

∑
n′

∫
dq

(2π )3
kBT

∑
ν

∫
|p|<p0

dp
(2π )3

G0(k + p,ωn) G0(k′ + p,ωn′ )

×G0(k′,ωn′ )G0(q − k′,	ν − ωn′)G0(q − k,	ν − ωn)�0(q,	ν) �0(q + p,	ν)

� − γ

μ2

(
8π

m2 aF

) ∫
|p|<p0

dp
(2π )3

∫
dq

(2π )3

[fB(ξB(q)) − fB(ξB(q + p))]
ξB(q) − ξB(q + p)

� 64

3π3
(mγp0) (kF aF )3, (17)

where fB(ε) = (eε/(kBT ) − 1)−1 is the Bose function and ξB(q) = q2/(4m) − μB . This is also strongly suppressed with respect
to result (5) in the BEC limit.

The above estimates hold in the extreme BEC limit and require that |μ|/EF � (p0/kF )2, a condition which is quite difficult
to satisfy in practice numerically. When (kF aF )−1 = +2, for instance, |μ|/EF ≈ 4 while (p0/kF )2 ≈ 25 for the smallest value
p0/kF ≈ 5 that we can use for the numerical results of the critical temperature to be (essentially) independent of p0. For the
purpose of testing our numerical codes that span the BCS-BEC crossover against the analytic results (10), (11), (13), (15),
and (17) that are available in the BEC limit, we have thus made a number of specific runs of the numerical codes even up to
(kF aF )−1 ≈ +50, in order to get agreement within a few percent between the above analytic estimates and the numerical results.

D. Analytic estimates in the weak-coupling (BCS) limit

In the BCS limit where (kF aF )−1 � −1, the Fermi energy is the largest energy scale in the problem and the bare ladder
propagator �0 can be approximated by the constant value (−4πaF /m) (except for an irrelevant narrow temperature window
about T (0)

c ). One then expects only diagrams 4(a)–4(c) with the smallest number of �0 to mostly contribute in this limit.
To obtain analytic estimates of these diagrams, we redraw them in Fig. 6 where the wave vectors and frequencies of the

single-particle propagators G0 are explicitly indicated. Approximating �0 by a constant considerably simplifies these estimates
as shown in the following.

For the diagram Fig. 6(a) we obtain

�4a(k,ωn) � γ

(
4πaF

m

)∫
dq

(2π )3
kBT

∑
ν

∫
|p|<p0

dp
(2π )3

G0(k + p,ωn)2G0(q − k − p,	ν − ωn)

= −
(

4πaF

m

)
n

2

∂

∂μ
�2a(k,ωn) � 2 i

3 π
(kF aF )Im{�2a(k,ωn)} (18)

where Im{�2a(k,ωn)} can be read off from the right-hand side of Eq. (3).
For the diagram Fig. 6(b) we obtain instead

�4b(k,ωn) � γ

(
4πaF

m

) ∫
dq

(2π )3
kBT

∑
ν

G0(q − k,	ν − ωn)2
∫

|p|<p0

dp
(2π )3

G0(q − k − p,	ν − ωn)

=
(

4πaF

m

) ∫
dk′

(2π )3
kBT

∑
n′

G0(k′,ωn′ )2 �2a(k′,ωn′ ) �
(

4πaF

m

)
χ

(ph)
0 (0,0)�2a(0,0) = − 2

π
(kF aF )�2a(0,0),

(19)
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where χ
(ph)
0 (0,0) = −N0 is the value of the polarization (Lindhard) function of zero arguments per spin component at low

temperature.
Finally, for (one of) the diagrams Fig. 6(c) we obtain

�4c(k,ωn) � γ

(
4πaF

m

)∫
dq

(2π )3
kBT

∑
ν

G0(q − k,	ν − ωn)
∫

|p|<p0

dp
(2π )3

G0(k + p,ωn)G0(q − k − p,	ν − ωn)

= γ

(
4πaF

m

)∫
|p|<p0

dp
(2π )3

χ
(ph)
0 (p,0) G0(k + p,ωn)

≈
(

4πaF

m

)
χ

(ph)
0 (0,0) �2a(0,0) (20)

which essentially coincides with the result (19).
Expressions (18)–(20) show that the self-energies of

Figs. 4(a)–4(c) are all much smaller than the self-energy
of Fig. 2(a) in the extreme BCS limit whereby kF |aF | � 1.
In practice, the numerical calculation of these diagrams can
be extended with reasonable effort down to (kF aF )−1 ≈ −2,
where their contributions may turn out to be more relevant
than what is expected from the above estimates. However,
again for the purpose of testing our numerical codes that
span the BCS-BEC crossover against the analytic results (18)
and (19), and (20) available in the BCS limit, we have also
made a number of runs of the numerical codes down to
(kF aF )−1 = −5.0 using again the value p0/kF = 5, obtaining
in all cases a few percent agreement between the numerical
results and the above theoretical estimates.

III. NUMERICAL RESULTS

In the previous section, we have identified the fermionic
self-energy diagrams that include the effect of disorder at
the lowest significant order, over and above the t-matrix
approximation spanning the BCS-BEC crossover. We have
also obtained analytic estimates for these diagrams separately
in the BCS and BEC limits where such estimates are possible,
and checked the analytic results against accurate numerical
calculations.

We pass now to extend the numerical calculations to the
whole BCS-BEC crossover, aiming at establishing a hierarchy
on the relative importance of the various diagrams. This will
eventually enable us to select a limited subset of diagrams, that
will be retained in the final calculation of physical quantities
like the critical temperature and chemical potential across the
BCS-BEC crossover in the presence of disorder.

A. Numerical calculation of the self-energy diagrams
in the presence of weak disorder throughout

the BCS-BEC crossover

We have calculated the wave-vector and frequency de-
pendence of all the fermionic self-energy diagrams reported
in Figs. 2 and 4(a)–4(f), and of the bosoniclike self-energy
insertions that enter the diagrams of Figs. 4(g)–4(j), using the
values of the critical temperature T (0)

c and of the corresponding
chemical potential μ(0)(T (0)

c ) of the clean system reported in
Fig. 1 as functions of coupling.

As an example, we show in Fig. 7 the dependence
on the wave vector of the fermionic self-energy �2a+2b

[corresponding to the sum of the diagrams of Figs. 2(a)
and 2(b)] and of the fermionic self-energies �4b and �4c

[corresponding to the diagrams of Figs. 4(b) and 4(c), in
order] taken at the Matsubara frequency ωn=0 = πkBT (0)

c ,
for three different couplings with the value γ̃ = 0.01 for the
dimensionless disorder parameter. Each self-energy takes into
account the multiplicity factor of the diagrams [for instance,
two diagrams contribute to the self-energy �4c as shown in
Fig. 4(c)]. The corresponding dependence on the Matsubara
frequency is reported in Fig. 8 for vanishing wave vector.

A similar analysis can be performed for the bosoniclike self-
energy insertions that enter the diagrams of Figs. 4(g)–4(j).
This is shown in Fig. 9 where the wave-vector and frequency
dependence of diagrams 4(i) and 4(j) is compared with that
of diagrams 4(g) and 4(h). From this comparison we conclude
that diagrams 4(g) and 4(h) can be neglected with respect to
diagrams 4(i) and 4(j).

Accordingly, in Figs. 7 and 8 the ladder propagator entering
the diagram of Fig. 2(b) has been dressed only with the
bosoniclike self-energy insertions of Figs. 4(i) and 4(j), thus
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FIG. 7. (Color online) Imaginary part of the fermionic self-
energies �2a+2b, �4b, and �4c (in units of EF ) vs the wave vector
k (in units of kF ) taken at ωn=0 = πkBT (0)

c with T (0)
c and μ(0)(T (0)

c )
of the clean system for three couplings: (kF aF )−1 = −1 (top panels),
(kF aF )−1 = 0 (middle panels), (kF aF )−1 = +1 (bottom panels). The
disorder parameter is γ̃ = 0.01. The real part is given in the
corresponding insets. In the left panels, full (dashed) lines refer to
the presence (absence) of disorder.
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FIG. 8. (Color online) Imaginary part of the fermionic self-
energies �2a+2b, �4b, and �4c (in units of EF ) vs the Matsubara
frequency ωn (in units of EF ) taken at k = 0 with T (0)

c and μ(0)(T (0)
c )

of the clean system for the same couplings of Fig. 7. The disorder
parameter is γ̃ = 0.01. The real part is given in the corresponding
insets. In the left panels, full (dashed) lines refer to the presence
(absence) of disorder.

forming the dressed ladder propagator � defined by Eq. (22)
below, which in the presence of disorder replaces the bare
ladder propagator �0. Correspondingly, in the left panels of
Figs. 7 and 8 and in the associated insets, full and dashed lines
refer to the presence and the absence of disorder, respectively.
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FIG. 9. (Color online) Imaginary part (and real part in the insets)
of the bosoniclike self-energies �B

4i−4j, �
B
4g, and �B

4h (in units of mkF )
vs the wave vector q (in units of kF ) taken at 	ν = 2πT (0)

c for the
imaginary part and at 	ν = 0 for the real part (left panels), and vs
the Matsubara frequency 	ν (in units of EF ) taken at q = 0 (right
panels). The coupling is (kF aF )−1 = 0 and the disorder parameter is
γ̃ = 0.01.
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FIG. 10. (Color online) Coupling dependence of the imaginary
part of the fermionic self-energies of Fig. 2 (both with the bare �0

without disorder and with the dressed � with disorder; see the text)
and of Fig. 4 (in units of EF ), taken at k = 0 and ωn=0 = πkBT (0)

c

with T (0)
c and μ(0)(T (0)

c ) of the clean system. The disorder parameter
is γ̃ = 0.01.

A general conclusion that can be drawn from the above
analysis is that, when a given self-energy is dominant with
respect to another one at (or near) zero wave vector and
frequency, it also remains dominant for all wave vectors and
frequencies. For this reason, to assess (at least in a preliminary
way) the relative importance of the various self-energies one
may look at their imaginary parts at zero wave vector and
frequency, since it will be the imaginary part of a given
self-energy to mostly affect the value of the critical temperature
(see below).

This comparison is shown in Fig. 10 throughout the whole
BCS-BEC crossover, where the behavior of all fermionic
diagrams drawn in Figs. 2 and 4 is reported. Besides the
self-energy �2a+2b which is by far the most dominant one
for all couplings, at this level special consideration should
apparently be given to the self-energies �4b and �4c (and
possibly also to the self-energy �4f).

Here, the relevance of diagram �4b can be expected by
the self-consistent dressing by disorder of the upper line in
the t-matrix self-energy �2b. Consideration to the diagrams
�4c goes instead back to the theory of disordered interacting
electrons in metals, where it is referred to as the Hartree
correction to the self-energy.1

A final assessment on the relative importance of the various
fermionc self-energy diagrams is deferred to the calculation of
the critical temperature in the presence of disorder throughout
the BCS-BEC crossover, to be considered next.

B. Numerical results for the critical temperature
and chemical potential in the presence of weak disorder

throughout the BCS-BEC crossover

For a clean system, the critical temperature T (0)
c for

the transition from the normal to the superfluid phase can
be obtained in the grand-canonical ensemble in terms of the
Thouless criterion �−1

0 (q = 0,	ν = 0; μ,T (0)
c ) = 0.28 In the

presence of disorder, this criterion has to be generalized to
include scattering off the impurities. For the present treatment
of the BCS-BEC crossover, it is sufficient to consider the
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FIG. 11. (Color online) Critical temperature Tc (in units of EF ) vs
the coupling parameter (kF aF )−1. In panel (a), the disorder parameter
γ̃ is kept at the value 0.01 and various approximations for the
self-energy are considered in the density equation: �2a+2b (dashed
line), �2a+2b+4c (dotted line), and �2a+2b+4b+4c (dashed-dotted line).
The result for the clean system is also shown for comparison (full
line). The circle evidences the region past the maximum of Tc where
in the presence of disorder all curves merge into a single one (the inset
makes this region more evident). The arrow on the right identifies
the value of Tc reached asymptotically in the BEC limit in the
presence of disorder. In panel (b), only the self-energy �2a+2b is
considered for various values of the disorder parameter γ̃ : 0 (full
line), 0.001 (dashed-dotted line), 0.005 (dotted line), 0.01 (broken
line). The inset in panel (b) extends deeper to the BEC side of the
crossover the curves of Tc with γ̃ = 0 (full line) and γ̃ = 0.01 (dashed
line).

bosonic self-energy insertion of Figs. 4(i) and 4(j) with
�B

4i−4j (q,	ν) given by expression (7) and obtain a modified
value Tc of the critical temperature from the condition

�−1
0 (q = 0,	ν = 0; μ,Tc) = �B

4i−4j (q = 0,	ν = 0; μ,Tc),

(21)

which is reminiscent of the Hugenholtz-Pines relation for
pointlike bosons.29 More generally, we may define a dressed
ladder propagator �(q,	ν), such that

�−1(q,	ν) = �−1
0 (q,	ν) − �B

4i−4j (q,	ν), (22)

in terms of which the modified Thouless criterion (21) reads
�−1(q = 0,	ν = 0; μ,Tc) = 0.

In addition, the chemical potential can be eliminated in
favor of the particle density via the equation

n = 2
∫

dk
(2π )3

kBT
∑

n

eiωnη G(k,ωn), (23)

where G−1(k,ωn) = G−1
0 (k,ωn) − �(k,ωn) identifies a

dressed fermionic propagator G in terms of the bare G0 and
of the chosen fermionic self-energy �.30
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FIG. 12. (Color online) Chemical potential μ(Tc) at Tc (in units
of EF ) vs the coupling parameter (kF aF )−1. Conventions are the
same of Fig. 11. In panel (a) the disorder parameter γ̃ is kept fixed
and various approximations for the self-energy are considered in
the density equation, while in panel (b) only the self-energy �2a+2b

is considered for various values of the disorder parameter. In both
panels, the insets amplify the region where the chemical potential
changes sign.

From the analytic estimates and the numerical analysis that
we have carried out for the various self-energy contributions
reported in Figs. 2 and 4 (as well from the further checks made
on the effects of all self-energy contributions on the critical
temperature; see below), we end up eventually in retaining,
besides the fermionic self-energy �2a+2b where the bare �0

is replaced by the dressed ladder � of Eq. (22) with the full
dependence on q and 	ν , also the fermionic self-energies �4b

and �4c where �0 is again replaced by � but now with the
bosonic self-energy �B

4i−4j taken at q = 0 and 	ν = 0. Here,
the inclusion of a limited degree of self-consistency originates
from the need to avoid divergencies that may occur at the
critical temperature when q = 0 and 	ν = 0.

The results for the critical temperature Tc throughout the
BCS-BEC crossover obtained in this way in the presence of
disorder are shown in Fig. 11. In panel (a) several approxi-
mations are considered for the fermionic self-energy (namely,
�2a+2b, �2a+2b+4c, and �2a+2b+4b+4c) at fixed disorder, while
in panel (b) only the main approximation �2a+2b is retained
for various degrees of disorder. Note from panel (a) how
the inclusion of �4b results in a noticeable contribution to
Tc close to unitarity, slightly reducing the increase of Tc

obtained with �2a+2b in the presence of disorder on the
BCS side of unitarity. In the next section, we will discuss
in more detail this increase of Tc on the BCS side of
unitarity and relate it to peculiar features of the single-particle
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density of states in the presence of interaction and disorder.
Note also how different approximations in the presence of
disorder all give essentially the same result for Tc past
the coupling (kF aF )−1 ≈ 0.5, signaling the collapse of the
underlying Fermi surface and the corresponding emergence of
a predominantly bosonic character in the system. We have also
verified that the further inclusion of the fermionic self-energy
�4f (or else of the remaining fermionic self-energies out
of those of Fig. 4) does not change appreciably the above
results.

In the inset of Fig. 11(b) the curves of Tc obtained with the
self-energy �2a+2b with γ̃ = 0 (full line) and γ̃ = 0.01 (dashed
line) are extended deeper to the BEC side of the crossover, to
highlight the fact that the limiting value of the Bose-Einstein
temperature TBEC is much reduced by disorder. To this end,
we have verified numerically that when γ̃ = 0.01 this limiting
value is approximately 0.14 TF in agreement with the analytic

estimate (26) below, to be contrasted with the value 0.218 TF

of TBEC for the clean system.
The corresponding results for the chemical potential μ(Tc)

at Tc are shown in Fig. 12. In contrast to Tc, for this
quantity only minor differences result when considering
various approximations for the fermionic self-energy. Note
how the presence of disorder makes the sign change of the
chemical potential, which is a characteristic feature of the
BCS-BEC crossover, to occur closer to unitarity with respect
to the clean case. We shall return to this point in the next
section while discussing the fate of the underlying remnant
Fermi surface.

It is relevant to compare our numerical results for Tc with
the analytic estimates that can be obtained in the extreme BCS
and BEC limits. In particular, in the extreme BEC limit where
results (10) and (11) hold, we obtain by expanding Eq. (23) in
terms of the self-energy of Fig. 2(b) with � replacing �0

n

2
� −

∫
dk

(2π )3
kBT

∑
n

∫
dq

(2π )3
kBT

∑
ν

G0(k,ωn)2G0(q − k,	ν − ωn) �(q,	ν)

� −
∫

dk
(2π )3

kBT
∑

n

G0(k,ωn)2 G0(−k,−ωn)
∫

dq
(2π )3

kBT
∑

ν

ei	νη �(q,	ν)

�
(

m2aF

8π

) ∫
dq

(2π )3
kBT

∑
ν

ei	νη
[
�0(q,	ν) + �0(q,	ν)2 �B

4i−4j (q,	ν)
]
, (24)

where the result (9) has once more been used. With expressions (6), (10), and (11) where μB is set to zero in order to identify Tc,
Eq. (24) becomes

n

2
� −

∫
dq

(2π )3
kBTc

∑
ν

ei	νη
1

i	ν − q2/(4m)
− γ (4m)3/2

π
kBTc

∑
ν

ei	νη

∫
dq

(2π )3

√−i	ν(
i	ν − q2

4m

)2

=
(

mkBTc

π

)3/2

ζ (3/2) + (4γ ) (2m)3

4 π2
kBTc, (25)

where ζ (3/2) is the Riemann ζ function of argument 3/2. With the mapping nB = n/2, mB = 2m, and γB = 4γ between bosonic
and fermionic quantities, Eq. (25) recovers the expression obtained in Ref. 27 for noninteracting pointlike bosons at the lowest
order in the disorder. Solving for Tc by iteration, one gets accordingly from Eq. (25)

Tc � T (0)
c

(
1 − 32 γ m3 kB T (0)

c

3 π2 n

)
, (26)

where kBT (0)
c = (π/m)[n(2ζ (3/2))]2/3 is here the Bose-Einstein temperature of the ideal gas.

In the extreme BCS limit, on the other hand, disorder affects the system only through the self-energy diagram of Fig. 2(a).
Correspondingly, the critical temperature could be affected by dressing with this self-energy the fermion propagators G0 in the
rungs of the pair (ladder) propagator of Fig. 2(c). One obtains for the elementary rung in the limit q → 0 and 	ν → 0

∫
dk

(2π )3
kBT

∑
n

G0(k,ωn) G0(q − k,	ν − ωn)

−→
∫

dk
(2π )3

kBT
∑

n

1

iωn − ξ (k) + i
2τ

sgn(ωn)

1

i	ν − iωn − ξ (q − k) + i
2τ

sgn(	ν − ωn)

−−−−−→(q=0,	ν=0)

∫
dk

(2π )3

1

2 ξk

∫ +∞

−∞

dω

π
fF (ω)

1

2τ

[
1

[ω + ξ (k)]2 + 1
(2τ )2

− 1

[ω − ξ (k)]2 + 1
(2τ )2

]

�
∫

dk
(2π )3

1

2 ξ (k)
[fF ( − ξ (k)) − fF (ξ (k))] (27)
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where τ−1 = 2πN0γ and fF (ε) = (eε/(kBT ) + 1)−1 is the
Fermi function. The last line of Eq. (27) depends on the
assumption (2τ )−1 � EF , which is met by our condition
mγp0 � EF with p0 � kF .21 This shows that the rung (27)
(and therefore the critical temperature) is not affected by the
presence of a weak disorder, in agreement with the Anderson
theorem.31

Finally, it is interesting to compare the contrasting results
for the effect of a weak disorder on the critical temperature,
which are obtained for a system of noninteracting fermions
and noninteracting composite bosons, respectively, in the BCS
and BEC limit, in the light of the apparent similarity between
expressions (1) and (10) for the relevant self-energies in the
two cases. The difference appears, in fact, in the resulting
expressions (3) and (11), in order, since to the Fermi statistics
there corresponds a large value of μ in Eq. (3) while the
Bose statistics allow μB to vanish in Eq. (11) at the critical
temperature. Accordingly, fermions are protected from the
influence of disorder by the presence of a (large) Fermi surface
which much limits the possible scattering processes by the
impurities, while bosons are not.

C. Effects of disorder on Tan’s contact

It is further interesting to assess how Tan’s contact C is af-
fected by disorder at the lowest order here considered through-
out the BCS-BEC crossover. The importance of the contact,
which is a measure of the number of pairs of fermions in
the two spin states with small separations,18,19 stems from the
fact that it connects a number of universal relations involving
several properties of a system with short-range dynamics. For
instance, the asymptotic behavior of the fermionic distribution
n(k) (per spin component) is characterized by the relation

C = lim
k→∞

k4 n(k), (28)

where k = |k|.
These properties hold under quite general conditions even

in the presence of an external potential, although the numerical
value of the contact will depend on the specific form of external
potential (for given interparticle coupling and temperature).
In the present case of a disordered potential with form (2)
specified by the two parameters γ and p0, it may be physically
more relevant to assess how the contact depends on the
wave vector p0 that characterizes the correlation length of
the disorder rather than on the strength γ . We shall then be
concerned with the dependence of the contact C on p0 at finite
temperature once the asymptotic regime (28) has been reached
for sufficiently large values of k, along the lines explored in
Ref. 32 for the clean case.

Alternatively, the contact C can be conveniently obtained
using the definition C = (m�∞)2 in terms of the high-energy
scale �∞ introduced in Ref. 33, which is in turn calculated
through the relation

�2
∞ =

∫
dq

(2π )3
kBT

∑
ν

ei	νη �(q,	ν) . (29)

In the present context, for the clean system we take in Eq. (29)
for � the bare ladder propagator �0 of Fig. 2(c), while in
the presence of disorder we consider the dressed ladder
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FIG. 13. (Color online) The contact C at Tc calculated according
to Eq. (29) vs the coupling (kF aF )−1, for the clean case (full line) and
for the disordered case with γ̃ = 0.01 and several values of p0/kF : 5
(dashed line), 7 (dotted line), 10 (dashed-dotted line). The inset
compares the values of C at Tc for the disordered case with γ̃ = 0.01
and p0/kF = 5, as obtained from Eq. (29) (full line) and from the
definition (28) (dots).

propagator defined by Eq. (22) which includes the bosoniclike
self-energy �B

4i−4j .
Figure 13 shows the coupling dependence of C taken at

Tc for the clean and disordered cases, respectively, where the
strength parameter γ is held fixed while p0 is varied. (Note
that C is dimensionless once the wave vectors are in units of kF

[n(k) is also normalized such that
∫

dk
(2π)3 n(k) = 1

2 ]). We have

verified numerically that in the BEC limit (kF aF )−1 � +1 the
relative increase δC/C of the contact with respect to the clean
case coincides with the analytic estimate (2kF aF )2 γ̃ p0/kF ,
obtained by combining the approximate expression for the
density given by the second line on the right-hand side of
Eq. (24) and the value of the bosonic chemical potential μB

extracted from the modified Thouless criterion (21).
We have also verified that the results for C obtained in this

way from Eq. (29) coincide in all cases with those obtained
by looking directly at the leading asymptotic behavior (28)
of n(k) (as it was done for the clean case in Ref. 32). To
this end, we have considered consistently only the fermionc
self-energy �2a+2b (with � replacing �0 in the presence of
disorder). An example of the comparison between the two
alternative methods (28) and (29) for calculating C is shown
in the inset of Fig. 13. And we have also verified in this context
that the further inclusion of the self-energies �4b and �4c does
not modify the results for n(k) (and thus the contact) at the
leading asymptotic order in k.

The main conclusion that can be drawn from Fig. 13 is that
the effect of disorder is to enhance the value of the contact
at any coupling, thereby somewhat favoring the occurrence
of pairing correlations at least at short range. This is because
the contact C is also related to the short-distance behavior of
the pair-correlation function between fermions with opposite
spins,18,19

lim
ρ→0

g↑↓(ρ) = C

16 π2 ρ2
. (30)

To the extent that macroscopic coherence can be maintained
in the system, this enhanced effect of pairing due to disorder
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may also lead to an increase of the critical temperature as
already discussed in Sec. III B for the BCS side of unitarity,
as well as to an increase of the pseudogap energy to be
discussed next.

IV. CHARACTERIZATION OF THE SINGLE-PARTICLE
SPECTRAL FUNCTION

For a more complete understanding about the way disorder
affects a system of fermions which still preserves an underlying
remnant Fermi surface (or, else, a dilute system of weakly
interacting composite bosons when the Fermi surface has
collapsed), it is instructive to analyze the single-particle
spectral function corresponding to these systems in terms of
the relevant self-energies.

A. Fermionic spectral function

We first consider the evolution of the fermionic spectral
function from the BCS to the BEC limits, in terms of the
“minimal” set of fermionc self-energies that we have identified
in the paragraph following Eq. (23). In particular, in what
follows we shall limit for simplicity to consider only the effects
of the fermionc self-energy �2a+2b (with � replacing �0 in the
presence of disorder) and address two relevant issues that have
already emerged from Fig. 11(a), one on the BCS and the other
one the BEC side of unitarity:

(i) On the BCS side of unitarity, in the presence of disorder
there occurs an increase of Tc of a few percent with respect to
the clean case, indicating that disorder favors fermion pairing
in that regime. Correspondingly, an analysis of the pseudogap
energy associated with this single-particle spectral function
along the lines of Ref. 34 will help in clarifying this finding.

(ii) On the BEC side of unitarity, it should be possible to
associate the coupling, at which the inclusion of additional self-
energy contributions [specifically, �4b and �4c in Fig. 11(a)]
becomes irrelevant for the critical temperature, to the point
where the collapse of the Fermi surface eventually occurs. In
this context, it will be relevant to extend to the presence of
disorder the analysis made in Ref. 35 for the clean system,
in order to identify the value of the Luttinger wave vector kL

where the single-particle dispersion backbends. The presence
of a finite value for kL signals, in fact, the existence of an
underlying remnant Fermi surface even for an interacting (and
now also disordered) Fermi gas and points correspondingly to
the importance of the Fermi statistics in physical quantities.

Figure 14 presents plots of the single-particle spectral
function A(k,ω) vs the frequency ω for two characteristic
values of k, where the analytic continuation iωn → ω + iη

to real frequency ω has been taken in the expressions of the
self-energy to obtain A(k,ω).36 Note how the introduction of
disorder results quite generally in a shift and broadening of the
peaks of A(k,ω) with respect to the clean case. In particular, in
weak coupling this shift can be attributed to the corresponding
(rigid) shift of the chemical potential as reported in Fig. 12.

Figure 15 compares typical dispersion relations obtained
from the single-particle spectral function A(k,ω) for the clean
(left) and disordered (right) system, in the coupling interval
−1.0 � (kF aF )−1 � 0.0 where an increase of Tc is seen to
occur in Fig. 11(a) for the disorder with respect to the clean
system. About the middle of this coupling interval where the

 0

 2

 4

 6

A
(k

,ω
) *

E
F (a1)

 0

 2

 4

 6

A
(k

,ω
) *

E
F (b1)

 0

 2

 4

 6

-1  0  1

A
(k

,ω
) *

E
F

ω/EF

(c1)

(a2)

(b2)

-1  0  1
ω/EF

(c2)

FIG. 14. (Color online) Single-particle spectral function A(k,ω)
(in units of E−1

F ) vs ω (in units of EF ), for the clean (left panels)
and disordered system with γ̃ = 0.01 (right panels), for the three
couplings (kF aF )−1 = (−1.0,−0.5,0.0) from top to bottom. The
temperature is taken at the corresponding value of Tc. In each panel
full lines refer to k = 0 and broken lines to k = kF .

increase of Tc is maximum, a wider separation between the
upper and lower branches occurs in Fig. 15 for the disordered
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FIG. 15. (Color online) Dispersion relations ω (in units of EF ) vs
k (in units of kF ), obtained by following the upper (squares) and lower
(circles) peaks of the single-particle spectral function for the clean
(left panels) and disordered system with γ̃ = 0.01 (right panels) at
Tc for the same couplings considered in Fig. 14 (from top to bottom).
The lines represent the fits made following the procedure of Ref. 34,
from which the values of the pseudogap energy are extracted.
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FIG. 16. (Color online) Single-particle density of states N (ω) (in
units of the noninteracting value N0(0) = mkF /(2π 2) at the Fermi
level per spin component) vs ω (in units of EF ), for the clean (left
panels) and disordered system with γ̃ = 0.01 (right panels) at Tc

for the same couplings considered in Fig. 14 (from top to bottom).
The meaning of the double arrows is explained in the text. In each
panel, the dotted curve represents the free-fermion-like expression
N0(ω) = m3/2√

2π2

√
ω + μ with ω � −μ.

with respect to the clean system. This can be interpreted as an
increase of the value of the pseudogap energy at Tc and thus
as a reinforcement of pairing due to disorder.

A further check on this finding, where not only the positions
of the peaks of the single-particle spectral function but also
their weights contribute, can be obtained by looking at the
single-particle density of states:

N (ω) =
∫ ∞

0

dk

2π2
k2 A(k,ω). (31)

For this quantity, the opening of a pseudogap at Tc corresponds
to the emergence of a depression about ω = 0 with respect
to the free-particle case. Figure 16 shows the plots of N (ω)
obtained at Tc for the clean (left) and disordered (right)
systems, for the same three couplings on the BCS side of
unitarity considered in Fig. 15. A widening of the depression
about ω = 0 is evident for the disordered with respect to
the clean system. In each case, the size of this depression
corresponds quite well to the value of the pseudogap energy
obtained from the plots of Fig. 15, as represented by the width
of the double arrow reported in each panel of Fig. 16.

A comparison between the values of the pseudogap energy
�pg obtained in this way at Tc for the clean and disordered
system is shown in Fig. 17(a) as a function of coupling,
which has been extended to the value (kF aF )−1 = +1.0 on
the BEC side of unitarity for the purpose. From this plot,
an increase of �pg when passing from the clean to the
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FIG. 17. (Color online) (a) Pseudogap energy �pg (in units of
EF ) vs the coupling (kF aF )−1, obtained at Tc for the clean system
(squares) and the disordered system with γ̃ = 0.01 (circles) by an
analysis of the single-particle spectral function along the lines of
Fig. 15. (b) Increase δ�pg of the pseudogap energy (stars, left scale)
and δTc of the critical temperature (diamonds, right scale) vs the
coupling (kF aF )−1. (c) Luttinger wave vector kL (in units of kF ) vs
the coupling (kF aF )−1, obtained at the corresponding values of Tc for
the clean (squares) and disordered system with γ̃ = 0.01 (circles).

disordered system is clearly visible approximately in the
interval −0.75 � (kF aF )−1 � 0.

The increase δ�pg = �(dis)
pg − �(clean)

pg of the pseudogap
energy obtained from Fig. 17(a) is then seen in Fig. 17(b) to
nicely correlate with the increase δTc = T (dis)

c − T (clean)
c of the

critical temperature obtained from Fig. 11(a) over the relevant
coupling range. This finding points to the conclusion that the
presence of (an albeit weak) disorder appears to favor fermion
pairing in this coupling regime, thereby somewhat increasing
the value of Tc.37

In addition, we have extended to the BEC side of unitarity
the analysis of the dispersion relations for the clean and
disordered systems that was described in Fig. 15, in order to
identify the Luttinger wave vector kL where the single-particle
dispersion backbends and consequently to locate the coupling
value at which the collapse of the Fermi surface occurs.35

The results obtained for kL vs (kF aF )−1 at Tc are reported
in Fig. 17(c). They show that the presence of disorder has
the effect of moving closer to unitarity the collapse of the
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underlying remnant Fermi surface with respect to the clean
case. In particular, in the presence of disorder the critical
coupling where kL vanishes is about 0.4–0.5. This value
coincides with the coupling corresponding to the empty
circle in Fig. 11(a) where different approximations for the
fermionic self-energy all give the same result for Tc, thus
signaling the emergence of a predominantly bosonic character
for the system. Past this point, Fig. 11(b) shows that the
critical temperature starts to depend strongly on the amount of
disorder, thus implying that the system is no longer protected
from the presence of disorder as soon as the underlying Fermi
surface is gone.

B. Bosonic spectral function

It is also interesting to determine how disorder affects the
spectral function of composite bosons, in the extreme BEC
limit when they can be assimilated to pointlike bosons for
which the internal fermionic degrees of freedom become
immaterial. This case can be directly relevant to ultracold
boson gases to the extent that their interparticle interaction
is negligible.

Accordingly, we have calculated the bosonic self-energy
�B(q,	ν) given by the right-hand side of Eq. (10) with γ̃ =
0.01 and p0 = 5kF , in which the bosonic chemical potential
μB has been set to zero to enforce the critical condition
at Tc. (We maintain the fermionic units kF and EF also
for bosonic quantities, in order to keep comparable values
for the dimensionless disorder parameter γ̃ .) The analytic
continuation i	ν → 	 + iη to real frequency 	 has then been
taken to obtain the bosonic single-particle spectral function
AB(q,	), whose characteristic shape is shown in Fig. 18(a) for
the typical value q = kF . Note, in particular, the occurrence of
a

√
	 behavior at threshold (as evidenced by the dashed line)

and the presence of a Lorentian form (dotted line) which well
approximates the shape of the main peak locally. The position
of this peak is indicated by the vertical arrow and its full width
at half maximum by the double horizontal arrow.

This calculation has then been repeated over an extended
range of q (keeping the same values γ̃ = 0.01 and p0 = 5kF ),
and has resulted in the q dependence for the position and width
of the peak shown respectively in Figs. 18(b) and 18(c). In
particular, Fig. 18(b) compares the position of the peak in the
presence (full line) and in the absence (dashed line) of disorder,
from which one verifies that for large q their difference
equals −μB where μB = Re {�B(0,0)} = −16γ̃ EF p0/kF is
the value of the bosonic chemical potential at T = Tc in
the presence of disorder. The width of the peak reported
in Fig. 18(c), on the other hand, shows a linear increase
up to about the value q = p0/2, and then decreases to zero
like q−1 for q � p0/2 when the bosons are eventually no
longer damped by disorder. The sizable value of this width
in the presence of disorder contrasts with the δ-function
shape of AB(q,	) for noninteracting bosons in the absence
of disorder, indicating again that disorder can affect bosons in
a considerable way even when it is treated at the lowest order.

V. CONCLUDING REMARKS

In this paper, we have presented a systematic study of the
effects of disorder due to random impurities on the BCS-BEC
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FIG. 18. (Color online) (a) Shape of the bosonic single-particle
spectral function AB (q,	) at Tc for a given wave vector q, in which
the threshold behavior (dashed line) and the Lorentian shape of the
main peak (dotted line) are evidenced. Wave-vector dependence of
(b) the position and (c) the full width at half maximum of the main
peak of AB (q,	). The meaning of the two curves in panel (b) is
explained in the text.

crossover, whereby the strength of the interparticle attraction
between fermions of two different species is varied from the
weak- (BCS) to the strong- (BEC) coupling regime.

The effects of disorder have been treated at the lowest
significant order in terms of a diagrammatic approach, with the
purpose of identifying the most relevant diagrams not only in
the BCS and BEC limits but also in the intermediate-coupling
regime about unitarity.

In this way, we have been able to follow the evolution of the
effects of disorder, from a system of noninteracting fermions
in the (extreme) BCS limit to a system of noninteracting
composite bosons made up of fermion pairs in the (extreme)
BEC limit. In the process, the Fermi surface, that underlies
the fermionic system and largely protects it from the effects
of disorder, gets progressively washed out, leaving eventually
the composite bosons to be much affected by the presence of
disorder. As a consequence, in future work it will be quite
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compelling to include the effects of disorder at higher order
especially on the BEC side of unitarity.

The identification of the most relevant diagrams at the
lowest order in the disorder has been done by performing
accurate numerical calculations over a wide coupling window
about unitarity where they are most feasible. This numerical
analysis has also been complemented by analytic estimates of
the diagrams at more extreme couplings outside this window.
The resulting crossed information between the numerical
and analytical procedures has been important to arrive at a
definite conclusion about the selection of a minimal set of
relevant diagrams, which is sufficient to retain at the order
here considered.

Numerical results for the simultaneous dependence on
coupling and disorder of the critical temperature, the chemical
potential, and Tan’s contact have been reported, quantities
that can all be obtained at the single-particle level. Significant
features have then been extracted from these numerical results,
by correlating them with a parallel analysis on the single-
particle spectral function. The increase found for the critical
temperature in the presence of disorder on the BCS side of
unitarity has thus been correlated with a corresponding in-
crease of the pseudogap energy, which appears as a depression
in the single-particle density of states. From this analysis we
have concluded that the presence of (an albeit weak) disorder
somewhat favors fermion pairing in this coupling regime. On
the BEC side of unitarity, on the other hand, we have verified
that the collapse of the Fermi surface makes it irrelevant to
include all possible refinements of the fermionic self-energy in
the presence of disorder, leading the way to a description of the
interacting fermionic system in terms of bosoniclike degrees
of freedom and rendering the system much more sensitive to
the presence of disorder with a marked depression of the onset
of the superfluid phase.

Future work should be directed at improving on the
description of disorder, possibly resting on the minimal set
of diagrams here identified at the lowest significant order
in the disorder. This would imply, for instance, to replace
whenever relevant the single impurity line by a ladder of
impurity lines, in a similar fashion to what is done in the
theory of the metal-insulator transition.1,2 In the context of
the BCS-BEC crossover, however, the impurity ladder, too,
would be affected by the collapse of the Fermi surface
on the BEC side of unitarity. On the other hand, keeping
the description of the effects of the attractive interparticle
interaction throughout the BCS-BEC crossover at the level
of the bare t matrix (as we have done in the present treatment)
should be sufficient even when improving on the description of
disorder.

To get a glimpse on the importance of the above arguments
for future more extensive diagrammatic approaches to the
BCS-BEC crossover in the presence of disorder, we may
consider the calculation of the density-density correlation
function χnn(Q) (per spin component) based on the diagrams
of Fig. 19(a), which are associated with the fermionic self-
energy �2a in the presence of disorder. Consistently with what
we have done for the self-energy �2a itself (cf. Fig. 3), we have
obtained χnn(Q) numerically as a function of the chemical
potential μ. In the present case, for a given small value of 	ν

we have fitted the numerical results for χnn(Q) vs Q2 in terms
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FIG. 19. (Color online) (a) Series of diagrams for the density-
density correlation function χnn(Q) that results when the fermionic
self-energy is given by �2a of Fig. 2(a). Here, Q = (Q,	ν) is
the external four-vector. The single-particle lines are consistently
calculated with the same self-energy �2a . (b) Function D(μ) obtained
through the fit (32) [normalized to the noninteracting value D0 =
(3πmγ̃ )−1]. The inset shows the μ dependence of the prefactor χ0 of
the expression (32).

of the diffusive form,

χnn(Q) = χ0
D Q2

D Q2 + 	ν

, (32)

where χ0 represents the “static” (	ν → 0 and Q → 0) limit
and D plays the role of a diffusion coefficient. The calculation
has then been repeated for a few additional values of 	ν , in
order to verify that the same function D(μ) is obtained in
all cases. [In this calculation, the real part of �2a is taken to
vanish, so that the limit p0 → ∞ can consistently be taken
when calculating the diagrams of Fig. 19(a).] The function
D(μ) obtained in this way is reported in Fig. 19(b) and shows a
characteristic

√
μ behavior for μ � 0, vanishing accordingly

when μ = 0 and remaining zero for μ > 0. Akin the self-
energy, additional diagrammatic contributions need then to
be considered to account for the effects of disorder on the
BCS-BEC crossover when dealing with the response functions
from which the diffusion coefficient can be extracted. This will
be especially important when addressing the role of (weak)
localization on the BCS-BEC crossover.
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APPENDIX: AVERAGES OVER DISORDER

Theoretical treatments of disorder in condensed matter
usually deal with averaging over the impurity configurations
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by considering a Gaussian correlated (white noise) disorder
with 〈u(r)u(r′)〉 = γ δ(r − r′). Here, u(r) = ∑N

i=1 v(r − Ri)
is the potential due to N impurities randomly distributed over
spatial positions Ri .

In the present treatment, we have adopted a truncated
version of this impurity potential, taken of the form (2) with a
finite value of the wave-vector cutoff p0. This is because the
presence of a finite p0 keeps also at finite values the effect
of the impurities on the chemical potential, whose control is
essential for driving the BCS-BEC crossover between the two
BCS and BEC limits. At the same time, this choice allows us
to deal in a convenient way with the relevant diagrammatic
structure in the wave-vector representation, as was shown in
Sec. II through a number of examples.

Specifically, to the form (2) that we have adopted there
corresponds the following finite-range correlator:

〈u(r)u(r′)〉p0 = γ p2
0

2π2 |r − r′| j1(p0|r − r′|), (A1)

where j1(z) = sin(z)
z2 − cos(z)

z
is a spherical Bessel function. The

expression on the right-hand side of Eq. (A1) approaches the
value γ p3

0/(6π2) in the limit |r − r′| → 0, presents oscilla-
tions for finite |r − r′| which become wilder for increasing p0,
and preserves the finite area

∫
d(r − r′)〈u(r)u(r′)〉p0 = γ (A2)

irrespective of the value of p0.
A different approach was considered in Ref. 13 where u(k)2

was taken of the smooth form γ exp{−�dk2/2}, to which there
corresponds the correlator

〈u(r)u(r′)〉�d
= γ

(2π )3/2 �3
d

e−|r−r′ |2/2 �2
d . (A3)

Expressions (A1) and (A3) can be compared in the limit |r −
r′| → 0. Assuming the same value for γ , one obtains p0�d =
(9π/2)1/6 � 1.555. In both cases, the impurity potential is
assumed not to sustain bound states.

Note that, for the details of disorder to be irrelevant, one
has to require that 2π/kF � �d � 3/(2 p0), thus implying that
p0/kF � 1. With our choice (2) of the impurity potential, we
have verified numerically that when p0/kF lies in the range
between 5 and 10 the results for the critical temperature across
the BCS-BEC crossover are rather stable for a given value of
γ . As an example, in Fig. 20 we show these results for the value
γ̃ = 0.01 where γ̃ = γN0/EF is the dimensionless disorder
strength.

It also relevant to find a way to compare the correlator (A1),
which we have used in our theoretical treatment of the effects
of a weak disorder on the BCS-BEC crossover, with the
correlator associated with a speckle potential,38 which has
been utilized thus far in the experiments with ultracold (Bose
as well as Fermi) atoms.7–10 To this end, we compare in
Fig. 21 the spatial profiles of finite-range correlator (A1)
and of the correlator corresponding to the speckle disorder,
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FIG. 20. (Color online) Critical temperature (in units of the
Fermi temperature) vs the coupling (kF aF )−1 for a fixed disorder
strength γ̃ = 0.01. Several values of the wave-vector cutoff p0/kF are
considered: 2 (dotted line); 5 (dashed line); 10 (dash-dotted line). The
curve corresponding to a clean system is also reported for comparison
(full line).

namely,

〈u(r)u(r′)〉s = V 2

[
sin

( |r−r′|
�s

)
|r−r′|

�s

]2

, (A4)

in such a way that correlators (A1) and (A4) have the same
value when r = r′ and enclose the same volume up to their
respective first nodes in the variable r − r′.

We obtain the condition γ p3
0/(6π2) = V 2 by equating

the values of the correlators at r = r′, and the condition
1.6754γ = 2π2V 2�3

s by equating the volumes enclosed up to
the respective first node [which lies at |r − r′| = 4.4934/p0 for
correlator (A1) and at |r − r′| = π�s for the correlator (A4)].
This yields

p0 = 1.713

�s

and γ = 11.78 V 2 �3
s , (A5)

which in dimensionless units correspond to

p0

kF

= 1.713

kF �s

and γ̃ = 0.298

(
V

EF

)2

(kF �s)
3 . (A6)
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FIG. 21. (Color online) Comparison between the radial profiles
of the correlators (A1) (full line) and (A4) (dashed line) when the
conditions (A5) hold. The normalization of the correlators is also
consistent with the conditions (A5).
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We have already specified that, in practice, p0/kF should not
be taken smaller than 5. The maximum value of γ̃ , on the other
hand, is limited by the requirement that in the BCS limit the
shift of the fermionic chemical potential due to disorder [as
given by the real part of the self-energy (3)] should not exceed,
say, 10% of the value of the Fermi energy. This gives

m γ p0

π2EF

= 2
γ

EF /N0

p0

kF

� 10 γ̃ � 10−1 (A7)

from which we obtain γ̃ � 10−2.

Experimentally, with the speckle disorder the values of
the parameters kF �s and V/EF range approximately in
the intervals 0.6–3.6 and 1–10, in the order.7–10 From the
above arguments, this corresponds to an upper value of
about 3 for the parameter p0/kF and at the same time
to a lower value of about 6.5 × 10−2 for the parame-
ter γ̃ of the broadened Gaussian potential. These val-
ues can still be considered within the boundaries of our
approach.
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