7 research outputs found

    CD(8+ )T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Several studies have implicated a role of inflammation in the pathogenesis of lung damage in idiopathic pulmonary fibrosis (IPF). Parenchymal lung damage leads to defects in mechanics and gas exchange and clinically manifests with exertional dyspnea. Investigations of inflammatory cells in IPF have shown that eosinophils, neutrophils and CD(8+ )TLs may be associated with worse prognosis. We wished to investigate by quantitative immunohistochemistry infiltrating macrophages, neutrophils and T lymphocytes (TLs) subpopulations (CD(3+), CD(4+ )and CD(8+)) in lung tissue of patients with IPF and their correlation with lung function indices and grade of dyspnoea. METHODS: Surgical biopsies of 12 patients with IPF were immunohistochemically stained with mouse monoclonal antibodies (anti-CD(68 )for macrophages, anti-elastase for neutrophils, and anti-CD(3), anti-CD(4), anti-CD(8 )for CD(3+)TLs, CD(4+)TLs, and CD(8+)TLs respectively). The number of positively stained cells was determined by observer-interactive computerized image analysis (SAMBA microscopic image processor). Cell numbers were expressed in percentage of immunopositive nuclear surface in relation to the total nuclear surface of infiltrative cells within the tissue (labeling Index). Correlations were performed between cell numbers and physiological indices [FEV(1), FVC, TLC, DLCO, PaO(2), PaCO(2 )and P(A-a)O(2))] as well as dyspnoea scores assessed by the Medical Research Council (MRC) scale. RESULTS: Elastase positive cells accounted for the 7.04% ± 1.1 of total cells, CD(68+ )cells for the 16.6% ± 2, CD(3+ )TLs for the 28.8% ± 7, CD(4+ )TLs for the 14.5 ± 4 and CD(8+ )TLs for the 13.8 ± 4. CD(8+)TLs correlated inversely with FVC % predicted (r(s )= -0.67, p = 0.01), TLC % predicted (r(s )= -0.68, p = 0.01), DLCO % predicted (r(s )= -0.61, p = 0.04), and PaO(2 )(r(s )= -0.60, p = 0.04). Positive correlations were found between CD(8+)TLs and P(A-a)O(2 )(r(s )= 0.65, p = 0.02) and CD(8+)TLs and MRC score (r(s )= 0.63, p = 0.02). Additionally, CD(68+ )cells presented negative correlations with both FVC % predicted (r(s )= -0.80, p = 0.002) and FEV(1 )% predicted (r(s )= -0.68, p = 0.01). CONCLUSION: In UIP/IPF tissue infiltrating mononuclear cells and especially CD(8+ )TLs are associated with the grade of dyspnoea and functional parameters of disease severity implicating that they might play a role in its pathogenesis

    Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells

    Full text link
    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival

    A nuclear target for interleukin-1α: Interaction with the growth suppressor necdin modulates proliferation and collagen expression

    No full text
    There is growing evidence for the intracellular role of cytokines and growth factors, but the pathways by which these activities occur remain largely obscure. Previous work from our laboratory identified the constitutive, aberrant expression of the 31-kDa IL-1α precursor (pre-IL-1α) in the nuclei of fibroblasts from the lesional skin of patients with systemic sclerosis (SSc). We established that pre-IL-1α expression was associated with increased fibroblast proliferation and collagen production. Further investigation has led to the identification of a mechanism by which nuclear expression of pre-IL-1α affects fibroblast growth and matrix production. By using a yeast two-hybrid method, we found that pre-IL-1α binds necdin, a nuclear protein with growth suppressor activity. We mapped the region of pre-IL-1α responsible for necdin binding and found it to be localized near the N terminus, a region that is present on pre-IL-1α, but not the mature 17-kDa cytokine. Expression studies demonstrated that pre-IL-1α associates with necdin in the nuclei of mammalian cell lines and regulates cell growth and collagen expression. Our results provide the first evidence, to our knowledge, of a nuclear target for pre-IL-1α. Based on these findings, we propose that the constitutively up-regulated expression of pre-IL-1α in the nuclei of SSc fibroblasts up-regulates proliferation and matrix production of SSc fibroblasts through binding necdin, and by counteracting its effects on cell growth and collagen production
    corecore