267 research outputs found

    TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity

    Get PDF
    Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites

    τ\tauSPECT: A spin-flip loaded magnetic ultracold neutron trap for a determination of the neutron lifetime

    Full text link
    The confinement of ultracold neutrons (UCNs) in a three dimensional magnetic field gradient trap allows for a measurement of the free neutron lifetime with superior control over spurious loss channels and can provide a large kinetic energy acceptance to enhance statistical sensitivity. In this paper, we present the first successful implementation of a pulsed spin-flip based loading scheme for a three-dimensional magnetic UCN trap. The measurements with the τ\tauSPECT experiment were performed at the pulsed UCN source of the research reactor TRIGA Mainz. We report on detailed investigations of major systematic effects influencing the neutron storage time, statistically limited by the size of the recorded data set. The extracted neutron storage time constant of τ=859(16)s\tau = 859(16)\mathrm{s} is compatible with, but not to be interpreted as, a measurement of the free neutron lifetime.Comment: 15 pages, 19 figure

    RUNX1 regulates a transcription program that affects the dynamics of cell cycle entry of naive resting B cells

    Get PDF
    RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance

    Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response

    Get PDF
    IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development

    A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

    Get PDF
    We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of ExB is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence

    Get PDF
    The effects of ultraviolet-B (UV-B) radiation on photosystem II (PS II) were studied in leaves of Chenopodium album. After the treatment with UV-B the damage was estimated using chlorophyll a fluorescence techniques. Measurements of modulated fluorescence using a pulse amplitude modulated fluorometer revealed that the efficiency of photosystem II decreased both with increasing time of UV-B radiation and with increasing intensity of the UV-B. Fluorescence induction rise curves were analyzed using a mechanistic model of energy trapping. It appears that the damage by UV-B radiation occurs first at the acceptor side of photosystem II, and only later at the donor side

    Guillain-Barré Syndrome and Preceding Infection with Campylobacter, Influenza and Epstein-Barr Virus in the General Practice Research Database

    Get PDF
    BACKGROUND: A number of infectious agents have previously been suggested as risk factors for the development of Guillain-Barré syndrome (GBS), but robust epidemiologic evidence for these associations is lacking. METHODS AND FINDINGS: We conducted a nested case-control study using data from the United Kingdom General Practice Research Database between 1991 and 2001. Controls were matched to cases on general practice clinic, sex, year of birth and date of outcome diagnosis in their matched case. We found positive associations between GBS and infection with Campylobacter, Epstein-Barr virus and influenza-like illness in the previous two months, as well as evidence of a protective effect of influenza vaccination. After correction for under-ascertainment of Campylobacter infection, the excess risk of GBS following Campylobacter enteritis was 60-fold and 20% of GBS cases were attributable to this pathogen. CONCLUSIONS: Our findings indicate a far greater excess risk of GBS among Campylobacter enteritis patients than previously reported by retrospective serological studies. In addition, they confirm previously suggested associations between infection due to Epstein-Barr virus infection and influenza-like illness and GBS. Finally, we report evidence of a protective effect of influenza vaccination on GBS risk, which may be mediated through protection against influenza disease, or result from a lower likelihood of vaccination among those with recent infection. Cohort studies of GBS incidence in this population would help to clarify the burden of GBS due to influenza, and any potential protective effect of influenza vaccination

    Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response

    Get PDF
    Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor
    corecore