844 research outputs found

    Ion holes in the hydrodynamic regime in ultracold neutral plasmas

    Get PDF
    We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma

    Teamwork in the viscous oceanic microscale

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kanso, E. A., Lopes, R. M., Strickler, J. R., Dabiri, J. O., & Costello, J. H. Teamwork in the viscous oceanic microscale. Proceedings of the National Academy of Sciences of the United States of America, 118(29), (2021): e2018193118, https://doi.org/10.1073/pnas.2018193118.Nutrient acquisition is crucial for oceanic microbes, and competitive solutions to solve this challenge have evolved among a range of unicellular protists. However, solitary solutions are not the only approach found in natural populations. A diverse array of oceanic protists form temporary or even long-lasting attachments to other protists and marine aggregates. Do these planktonic consortia provide benefits to their members? Here, we use empirical and modeling approaches to evaluate whether the relationship between a large centric diatom, Coscinodiscus wailesii, and a ciliate epibiont, Pseudovorticella coscinodisci, provides nutrient flux benefits to the host diatom. We find that fluid flows generated by ciliary beating can increase nutrient flux to a diatom cell surface four to 10 times that of a still cell without ciliate epibionts. This cosmopolitan species of diatom does not form consortia in all environments but frequently joins such consortia in nutrient-depleted waters. Our results demonstrate that symbiotic consortia provide a cooperative alternative of comparable or greater magnitude to sinking for enhancement of nutrient acquisition in challenging environments.We are grateful to Y. Garcia for help with organism sampling and sorting. E.A.K. is funded by NSF-2100209, NSF RAISE IOS-2034043 and NIH R01 HL 153622-01A1. R.M.L. is a CNPq research fellow (grant # 310642/2017-5). J.H.C. and J.O.D. are funded by Grant NSF-2100705

    Stellarator coil design and plasma sensitivity

    Full text link
    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design

    Thirty-five year mortality following receipt of SV40- contaminated polio vaccine during the neonatal period

    Get PDF
    Early poliovirus vaccines, both inactivated and live attenuated, were inadvertently contaminated with simian virus 40 (SV40), a monkey virus known to be oncogenic for newborn hamsters. Although large epidemiologic studies have not identified an elevated cancer risk in persons who received SV40-contaminated vaccines, fragments of SV40 DNA have recently been identified in certain human tumours. We report the follow-up of a cohort of 1073 persons, unique because they received SV40-contaminated poliovirus vaccines as newborns in 1961–63. A previous report of the status of these subjects as of 1977–79 identified 15 deaths, none due to cancer. The present study utilized the National Death Index to identify deaths in the cohort for the years 1979–96. Expected deaths were calculated from Cleveland area sex-, age-, race- and year-specific mortality rates. Increased mortality from all causes was not found. 4 deaths from cancer were found compared to 3.16 expected (P= 0.77). However, 2 deaths from testicular cancer occurred, compared to 0.05 expected (P= 0.002), which may be a chance finding due to multiple comparisons. There were 2 deaths due to leukaemia, a non-significant finding, and no deaths due to tumours of the types putatively associated with SV40. Although these results are, for the most part, consistent with other negative epidemiologic investigations of risks from SV40-contaminated vaccines, further study of testicular cancer may be warranted, and it will be important to continue monitoring this cohort which is now reaching middle-age. © 2001 Cancer Research Campaig

    Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory

    Get PDF
    The classical experiments on turbulent friction in rough pipes were performed by J. Nikuradse in the 1930's. Seventy years later, they continue to defy theory. Here we model Nikuradse's experiments using the phenomenological theory of Kolmog\'orov, a theory that is widely thought to be applicable only to highly idealized flows. Our results include both the empirical scalings of Blasius and Strickler, and are otherwise in minute qualitative agreement with the experiments; they suggest that the phenomenological theory may be relevant to other flows of practical interest; and they unveil the existence of close ties between two milestones of experimental and theoretical turbulence.Comment: Accepted for publication in PRL; 4 pages, 4 figures; revised versio

    Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short‐term forecasts in Lake Erie

    Full text link
    Cyanobacterial harmful algal blooms (CHABs) are a problem in western Lake Erie, and in eutrophic fresh waters worldwide. Western Lake Erie is a large (3000 km2), shallow (8 m mean depth), freshwater system. CHABs occur from July to October, when stratification is intermittent in response to wind and surface heating or cooling (polymictic). Existing forecast models give the present location and extent of CHABs from satellite imagery, then predict two‐dimensional (surface) CHAB movement in response to meteorology. In this study, we simulated vertical distribution of buoyant Microcystis colonies, and 3‐D advection, using a Lagrangian particle model forced by currents and turbulent diffusivity from the Finite Volume Community Ocean Model (FVCOM). We estimated the frequency distribution of Microcystis colony buoyant velocity from measured size distributions and buoyant velocities. We evaluated several random‐walk numerical schemes to efficiently minimize particle accumulation artifacts. We selected the Milstein scheme, with linear interpolation of the diffusivity profile in place of cubic splines, and varied the time step at each particle and step based on the curvature of the local diffusivity profile to ensure that the Visser time step criterion was satisfied. Inclusion of vertical mixing with buoyancy significantly improved model skill statistics compared to an advection‐only model, and showed greater skill than a persistence forecast through simulation day 6, in a series of 26 hindcast simulations from 2011. The simulations and in situ observations show the importance of subtle thermal structure, typical of a polymictic lake, along with buoyancy in determining vertical and horizontal distribution of Microcystis.Key Points:Microcystis vertical distribution is a dynamic balance between turbulence and buoyancyAppropriate time step and numerical scheme avoid artifacts in random walk modelsVertical mixing with buoyancy improved simulation of bloom spatial distributionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134116/1/jgrc21832_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134116/2/jgrc21832.pd

    HIV Serostatus and Tumor Differentiation Among Patients with Cervical Cancer at Bugando Medical Centre.

    Get PDF
    Evidence for the association between Human immunodeficiency virus infection and cervical cancer has been contrasting, with some studies reporting increased risk of cervical cancer among HIV positive women while others report no association. Similar evidence from Tanzania is scarce as HIV seroprevalence among cervical cancer patients has not been rigorously evaluated. The purpose of this study was to determine the association between HIV and tumor differentiation among patients with cervical cancer at Bugando Medical Centre and Teaching Hospital in Mwanza, North-Western Tanzania. This was a descriptive analytical study involving suspected cervical cancer patients seen at the gynaecology outpatient clinic and in the gynaecological ward from November 2010 to March 2011. A total of 91 suspected cervical cancer patients were seen during the study period and 74 patients were histologically confirmed with cervical cancer. The mean age of those confirmed of cervical cancer was 50.5 ± 12.5 years. Most patients (39 of the total 74-52.7%) were in early disease stages (stages IA-IIA). HIV infection was diagnosed in 22 (29.7%) patients. On average, HIV positive women with early cervical cancer disease had significantly more CD4+ cells than those with advanced disease (385.8 ± 170.4 95% CI 354.8-516.7 and 266.2 ± 87.5, 95% CI 213.3-319.0 respectively p = 0.042). In a binary logistic regression model, factors associated with HIV seropositivity were ever use of hormonal contraception (OR 5.79 95% CI 1.99-16.83 p = 0.001), aged over 50 years (OR 0.09 95% CI 0.02-0.36 p = 0.001), previous history of STI (OR 3.43 95% CI 1.10-10.80 p = 0.035) and multiple sexual partners OR 5.56 95% CI 1.18-26.25 p = 0.030). Of these factors, only ever use of hormonal contraception was associated with tumor cell differentiation (OR 0.16 95% CI 0.06-0.49 p = 0.001). HIV seropositivity was weakly associated with tumor cell differentiation in an unadjusted analysis (OR 0.21 95% CI 0.04-1.02 p = 0.053), but strong evidence for the association was found after adjusting for ever use of hormonal contraception with approximately six times more likelihood of HIV infection among women with poorly differentiated tumor cells compared to those with moderately and well differentiated cells (OR 5.62 95% CI 1.76-17.94 p = 0.004).\ud Results from this study setting suggest that HIV is common among cervical cancer patients and that HIV seropositivity may be associated with poor tumour differentiation. Larger studies in this and similar settings with high HIV prevalence and high burden of cervical cancer are required to document this relationship

    Grazing in a turbulent environment: Behavioral response of a calanoid copepod, Centropages hamatus

    Get PDF
    Models of marine ecosystem productivity rely on estimates of small-scale interactions, particularly those between copepods and their algal food sources. Rothschild and Osborn [Rothschild, B. J. & Osborn, T. R. (1988) J. Plankton Res. 10, 465-474], hypothesized that small-scale turbulence in aquatic systems increases the perceived abundance of prey to predators. We tested this hypothesis by exposing the planktonic copepod Centropages hamatus to turbulent and nonturbulent environments at different prey concentrations. Our results fell into two main categories. First, the response to turbulence was characterized by an initial period having a high number of escape reactions. This period was followed by one of increased foraging. C. hamatus responded to the higher encounter rates due to turbulence as if it were experiencing altered prey concentrations. Second, the termination of turbulence resulted in an increased foraging response, which was not directly related to the encounter rate. Functional response curves do not adequately explain this foraging response because the time course of the foraging response depends on prior encounter experience and foraging motivation
    corecore