46 research outputs found

    QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    Get PDF
    An example of structural transformation of human skin sensitizers into various non-sensitizers based on interpretation of QSAR models

    Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Get PDF
    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation

    DESENVOLVIMENTO DE MÉTODOS COMPUTACIONAIS COMO ALTERNATIVA AO USO DE ANIMAIS PARA AVALIAÇÃO DA SENSIBILIZAÇÃO DA PELE

    Get PDF
    Introdução e objetivos: Métodos computacionais têm ganhado crescente destaque nas últimas décadas devido ao sucesso na avaliação de substancias que carecem de dados experimentais.1 O objetivo deste trabalho é desenvolver um método computacional capaz de predizer corretamente o potencial sensibilizador de compostos químicos na pele humana, como método alternativo ao uso de animais. Metodologia: Foi compilado e preparado o maior conjunto de dados publicamente disponível para sensibilização de pele humana e murina, contendo 135 compostos. A dose por unidade de área que induz 5% de resposta positiva (DSA05) em pele humana foi comparada com a concentração capaz de estimular em três vezes a proliferação de linfócitos nos linfonodos de camundongos (EC3). Modelos de relação quantitativa entre estrutura e atividade (QSAR) para pele humana foram gerados usando-se vários descritores moleculares e algorítmo SVM. Resultados e discussões: A concordância entre os dados de pele humana e de camundongos é de apenas 62%. Modelos de consenso que integram os modelos individuais de QSAR mostraram cobertura de até 75% e acurácia balanceada externa de até 70%. A triagem virtual de uma quimioteca de compostos comumente usados em cosméticos (COSMOS DB) identificou 175 possíveis compostos sensibilizadores. A análise de agrupamentos hierárquicos e interpretação dos modelos através dos descritores mais significativos revelou grupamentos moleculares responsáveis pela sensibilização da pele. Conclusões: A análise da sobreposição de dados revelou que o modelo animal considerado padrão-ouro falha em casos específicos para predição da toxicidade dérmica em seres humanos. Os modelos de QSAR gerados se mostraram superiores na predição de sensibilizadores em pele humana, quando comparados ao ensaio in vivo “padrão-ouro”, possibilitando seu uso em estratégias integradas de teste, contribuindo para redução do uso de animais em laboratório. Agradecimentos: Fundação de Amparo à Pesquisa do Estado de Goiás, Conselho Nacional de Pesquisa e Desenvolvimento, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.Palavras-Chave: sensibilização da pele; QSAR; toxicidade; triagem virtual

    Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Get PDF
    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential

    Protective Effector Memory CD4 T Cells Depend on ICOS for Survival

    Get PDF
    Memory CD4 T cells play a vital role in protection against re-infection by pathogens as diverse as helminthes or influenza viruses. Inducible costimulator (ICOS) is highly expressed on memory CD4 T cells and has been shown to augment proliferation and survival of activated CD4 T cells. However, the role of ICOS costimulation on the development and maintenance of memory CD4 T cells remains controversial. Herein, we describe a significant defect in the number of effector memory (EM) phenotype cells in ICOS−/− and ICOSL−/− mice that becomes progressively more dramatic as the mice age. This decrease was not due to a defect in the homeostatic proliferation of EM phenotype CD4 T cells in ICOS−/− or ICOSL−/− mice. To determine whether ICOS regulated the development or survival of EM CD4 T cells, we utilized an adoptive transfer model. We found no defect in development of EM CD4 T cells, but long-term survival of ICOS−/− EM CD4 T cells was significantly compromised compared to wild-type cells. The defect in survival was specific to EM cells as the central memory (CM) ICOS−/− CD4 T cells persisted as well as wild type cells. To determine the physiological consequences of a specific defect in EM CD4 T cells, wild-type and ICOS−/− mice were infected with influenza virus. ICOS−/− mice developed significantly fewer influenza-specific EM CD4 T cells and were more susceptible to re-infection than wild-type mice. Collectively, our findings demonstrate a role for ICOS costimulation in the maintenance of EM but not CM CD4 T cells

    CATMoS: Collaborative Acute Toxicity Modeling Suite.

    Get PDF
    BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≀50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Neutral Red Uptake Cytotoxicity Tests for Estimating Starting Doses for Acute Oral Toxicity Tests

    No full text
    In vitro cytotoxicity assays can be used as alternative toxicity tests to reduce the total number of animals needed for acute oral toxicity tests. This unit describes two methods for determining the in vitro cytotoxicity of test substances using neutral red uptake (NRU) and using the in vitro data to determine starting doses for in vivo acute oral systemic toxicity tests, e.g., the up-and-down procedure or the acute toxic class method. The use of the NRU methods to determine starting doses for acute oral toxicity tests may reduce the number of animals required, and for relatively toxic substances, this approach may also reduce the number of animals that die or require humane euthanasia due to severe toxicity. An interlaboratory validation study has demonstrated that the methods are useful and reproducible for these purposes. Two standardized protocols provide details for performing NRU tests with rodent and human cells.JRC.I.2-Chemical assessment and testin

    Development of a 96-Well Electrophilic Allergen Screening Assay for Skin Sensitization Using a Measurement Science Approach

    No full text
    The Electrophilic Allergen Screening Assay (EASA) has emerged as a promising in chemico method to detect the first key event in the adverse outcome pathway (AOP) for skin sensitization. This assay functions by assessing the depletion of one of two probe molecules (4-nitrobenzenethiol (NBT) and pyridoxylamine (PDA)) in the presence of a test compound (TC). The initial development of EASA utilized a cuvette format resulting in multiple measurement challenges such as low throughput and the inability to include adequate control measurements. In this study, we describe the redesign of EASA into a 96-well plate format that incorporates in-process control measurements to quantify key sources of variability each time the assay is run. The data from the analysis of 67 TCs using the 96-well format had 77% concordance with animal data from the local lymph node assay (LLNA), a result consistent with that for the direct peptide reactivity assay (DPRA), an OECD test guideline (442C) protein binding assay. Overall, the measurement science approach described here provides steps during assay development that can be taken to increase confidence of in chemico assays by attempting to fully characterize the sources of variability and potential biases and incorporate in-process control measurements into the assay
    corecore