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Abstract

Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible 

individuals that leads to skin sensitization. Although many chemicals have been reported as skin 

sensitizers, there have been very few rigorously validated QSAR models with defined applicability 

domains (AD) that were developed using a large group of chemically diverse compounds. In this 

study, we have aimed to compile, curate, and integrate the largest publicly available dataset related 

to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR 

models for skin sensitization, and employ these models as a virtual screening tool for identifying 

putative sensitizers among environmental chemicals. We followed best practices for model 

building and validation implemented with our predictive QSAR workflow using random forest 

modeling technique in combination with SiRMS and Dragon descriptors. The Correct 

Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 

71–88% when evaluated on several external validation sets, within a broad AD, with positive (for 

sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When 

compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the 

skin sensitization model in publicly available VEGA software, our models showed a significantly 

higher prediction accuracy for the same sets of external compounds as evaluated by Positive 

Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative 
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chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary 

candidates for experimental validation.
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INTRODUCTION

Humans are exposed to a variety of natural and synthetic substances that have never been 

tested in any toxicity assay. Information regarding the risks posed to human health and the 

environment for all these chemicals is limited and often inadequate, even among high 

production volume chemicals (Chuprina et al., 2010; Egeghy et al., 2012; Muir and Howard, 

2006). Many chemical hazards cause their adverse effects through skin contact; the 

associated phenomena include skin sensitization, skin penetration, and skin irritation (Dickel 

et al., 2002; Grandjean et al., 1988; Kimber et al., 2011). Each of these phenomena has been 

studied largely independently even though there may be functional links between them 

(Lepoittevin, 2011; Magnusson et al., 2004; Strid and Strobel, 2005).

The sequence of biological responses starting from the molecular initiating events and 

leading to in vivo adverse outcome(s) is represented by an adverse outcome pathway (AOP) 

(Ankley et al., 2010; Knudsen and Kleinstreuer, 2011; OECD, 2012; Watanabe et al., 2011). 

Protein haptenation, the molecular initiating event for skin sensitization, results in a delayed-

type hypersensitivity called allergic contact dermatitis (ACD) (Aeby et al., 2010; Hennino et 

al., 2005). ACD is a common occupational and environmental health issue (Keegel et al., 

2009; Kimber et al., 2002), and its AOP consists of two phases, i.e., skin sensitization and 

elicitation of the immune response. The first phase, skin sensitization, is initiated by the 

contact and penetration of the chemical through the skin (Karlberg et al., 2008). During their 

passage through the skin layers, chemicals can be subjected to different bio-transformations 

that may change their allergenic potential (OECD, 2012). Several haptens (i.e., small 

molecules that can elicit an immune response only when attached to a large carrier such as a 

protein) are known to bear lipophilic moieties and have low molecular weight (usually < 500 

Dalton), allowing them to easily cross the stratum corneum barrier (Bos and Meinardi, 

2000). They can also possess electrophilic moieties that can covalently bind the nucleophilic 

residues of cutaneous proteins to form stable conjugates, characterizing the molecular 

initiating event, which seems to be the major structure-dependent determinant of skin 

sensitization potential (Roberts and Aptula, 2008). These conjugates, also called hapten-

protein complexes, are processed by dendritic (Langerhan) cells that subsequently mature 

and migrate to lymph nodes (OECD, 2012; Saint-Mezard et al., 2004). Those processed 

complexes are presented to naive T-cells resulting in the proliferation of hapten-specific T-

cells that emigrate from the lymph nodes and enter the blood through the thoracic duct 

(Hennino et al., 2005). The second phase, elicitation, occurs after a subsequent contact with 

the same hapten. Haptens diffuse into the skin and form the hapten-protein complexes, 

which are taken up by skin cells. The circulating hapten-specific T-cells are activated by the 

keratinocytes, fibroblasts, and dendritic cells in the dermis and the epidermis, ultimately 
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triggering the inflammatory process responsible for lesions (Hennino et al., 2005; OECD, 

2012; Saint-Mezard et al., 2004).

Common in vivo tests for skin sensitization include the occluded patch test (Buehler, 1965), 

the guinea pig maximization test (Magnusson and Kligman, 1969), and the murine local 

lymph node assay (LLNA) (Basketter et al., 2002); the latter is regarded as the preferred test 

for evaluating skin sensitization (OECD, 2010). A modification of the LLNA, the reduced 

LLNA (rLLNA), which decreases the number of animals used for testing by 40%, was 

recently validated (ICCVAM, 2009). Despite some successful reductions in animal usage, 

these tests are still costly and have low throughput. In 2013, the European Union banned in 

vivo testing of cosmetic and toiletry ingredients , which leads for an urgent development of 

alternative methods to evaluate safety and efficacy of new chemicals (Adler et al., 2011). So 

far, there is no in vitro method for evaluating skin sensitization (Johansson and Lindstedt, 

2014).

Meanwhile, in silico computational methods are emerging as a practical solution for the 

evaluation of substances lacking experimental data (Raunio, 2011). However, modeling 

chemical toxicity is very challenging due to the high complexity of the underlying biological 

mechanisms and experimental variability (Gleeson et al., 2012). Although many previous 

skin sensitization models described in the literature (Table S1) appear to be well-fitted and 

robust, critical analysis of these studies reveals important problems. In our observation, most 

of the published QSAR models do not comply with the statistical procedures, statistical 

criteria, and recommendations for external validation that constitute common best practices 

(Golbraikh and Tropsha, 2002; Tropsha, 2010) and thus these models are not compliant with 

the OECD guidance on QSAR model development and validation (OECD, 2004). More 

specifically, the main drawbacks of the majority of published models are: (i) models’ 

predictivity was not properly assessed and/or tested on external compounds; (ii) models did 

not have applicability domain (AD) estimations; (iii) no proof of passing the Y-

randomization test (almost all the models from Table S1) was presented; and (iv) the use of 

unbalanced datasets has resulted in the generation of models biased towards the most 

populated class of compounds. As a consequence, despite the large number of previous 

QSAR studies, only one model (Nandy et al., 2014) can actually be employed to reliably 

predict skin sensitization potential of new chemicals. However it is not publicly available 

and only 67 compounds were used in the modeling set.

The major drawbacks of previous QSAR studies of skin sensitization compromise the 

practical use of prior methods and models for reliably assessing chemical-induced skin 

sensitization. For instance, the dataset studied by (Cronin and Basketter, 1994) contained 

many activity cliffs (Maggiora, 2006), i.e., structurally similar compounds with the same 

scaffolds (phenols and acetates in this case) that had drastically different properties; this 

explains why phenols and acetates were predicted so poorly.

The feasibility of building models for fragrance allergens using classification and ranking 

approaches was investigated in several studies (Hostýnek and Magee, 1997; Magee et al., 

1994). In these papers, the authors also tried to relate the permeability of fragrances with 

their skin sensitization potency. In another study (Devillers, 2000), the author attempted to 
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compare the prediction power of artificial neural networks and linear discriminant analysis 

but selected a test set that contained only 7% of the overall number of compounds, which is 

not large enough for proper validation. The TOPS-MODE (Topological Substructural 

Molecular Descriptors) approach used by (Estrada et al., 2003) demonstrated relatively good 

predictive performance but the reported accuracy is likely to be overly optimistic because of 

the very small size of the two external validation sets (15 and 6 compounds, respectively). 

Similarly, a model developed in another study (Miller et al., 2005) appeared to be highly 

accurate; however, a detailed analysis revealed that 20 compounds were designated as 

outliers and removed from the modeling set because of their poor fit between experimental 

and predicted values, most likely resulting in an artificially overestimated predictive 

performance of the model.

One study described an external validation procedure that was carried out on Tissue 

Metabolism Simulator for Skin Sensitization (TIMES-SS) (Roberts et al., 2007b). The 

authors experimentally tested 40 chemicals in the LLNA assay and then compared the 

results with computationally-derived predictions made by TIMES-SS. Despite the high 

specificity (ca. 87.5%), the sensitivity of the model was poor (ca. 56%). Another study 

(Golla et al., 2009) presented a QSAR model developed using a dataset compiled by the 

Federal Institute for Health Protection of Consumers and Veterinary Medicine (Schlede et 

al., 2003). The dataset was collected from clinical and experimental data on humans as well 

as animal tests. The authors divided the investigat compounds into three groups: (i) 

significant contact allergen; (ii) solid-based indication for conta allergenic effect; and (iii) 

insignificant contact allergen. This classification system was unclear an ambiguous, making 

the modeling efforts described by the authors (Golla et al., 2009) less practic for future use 

and more difficult to compare with those from other studies.

Given the frequency of dermal exposure to diverse chemicals and the lack of reliable silico 

models to predict skin sensitization potential for new chemicals, the main objectives of th 

study were to: (i) compile, curate, and integrate skin sensitization data from various literatu 

sources; (ii) develop and rigorously validate predictive and robust QSAR models for sk 

sensitization; (iii) compare these models with the Skin Sensitization modules in OECD QSA 

Toolbox and VEGA as a benchmarking; and (iv) apply developed models to the Scoreca 

chemical library for identifying potential skin or sense organ toxicants. In a companion 

study (Pa II), we have developed similar QSAR models of skin permeability and elucidated 

the relationsh between skin permeability and skin sensitization (Alves et al., 2014).

MATERIALS AND METHODS

The workflow developed in this work is illustrated in Figure 1.

Datasets

Skin sensitization dataset (dataset A)—The dataset used in this study was retrieved 

from the ICCVAM (Interagency Coordinating Committee on the Validation of Alternative 

Methods) report on the rLLNA (ICCVAM, 2009). The binary skin sensitization potential 

(sensitizer vs. non-sensitizer) based on the LLNA data obtained by ICCVAM from the 

literature was reported for 471 records (every record refers to a chemical compound but 
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because of the presence of duplicates, several records could describe the same compound). 

Before merging these data from different studies made by independent laboratories in one 

single dataset, we have checked the literature and found that the inter-laboratory variance of 

LLNA test was low, in agreement with an earlier analysis (ICCVAM and NICEATM, 1999; 

Scholes et al., 1992). Data discrepancy could have been introduced also by different vehicles 

used in LLNA assay to achieve optimal solubility and skin penetration of examined 

compounds (see Table S2). We have found in the literature (Anderson et al., 2011) that 

although there was some variation in EC3 values caused by different vehicles, the influence 

of a vehicle was too low to change the hazard classification (sensitizer vs. non-sensitizer) of 

a given chemical. Thus, we decided to integrate the data obtained with different vehicles in 

the same dataset. We analyzed the binary skin sensitization potential for duplicate records 

from our dataset to confirm its low variability. Since the sources of potential divergence 

were unclear, we did not separate the data by laboratory and vehicle. This analysis showed 

good concordance between all data: only three compounds had different annotations. 

Searching for additional reports for these three compounds, we found evidence that ethyl 

acrylate (Dearman et al., 2007) and hexyl cinnamic aldehyde (Dearman et al., 2001) were in 

fact sensitizers. Thus, only linalool alcohol was excluded from the dataset. Overall, 387 

unique compounds (260 sensitizers and 127 non-sensitizers) were considered for further 

modeling process. To avoid QSAR models with biased predictivity, the dataset was 

balanced prior to modeling to equalize the number of sensitizers and non-sensitizers. 

Specifically, we used the smaller group of non-sensitizers as probes to search for the most 

structurally similar sensitizers and thereby chose the first half of the sensitizer group (64 

compounds). The remaining half (63 compounds) were chosen from the rest of the initial 

sensitizer class randomly to maximize the chemical space coverage. This similarity-based 

selection procedure was carried out by the MDA (Methods of Data Analysis) module of the 

HiT QSAR software (Kuz’min et al., 2008) in two stages: (i) generate the matrix of 

Euclidean distances in the chemical space between all the pairs of compounds; and then (ii) 

choose 64 sensitizers with the smallest Euclidean distance to the nearest non-sensitizer. Such 

procedures allowed us to create the most challenging training set with structurally similar 

sensitizers and non-sensitizers, in order to achieve the most rigorous model capable of 

separating these two classes from each other, as well as to include a fraction of more diverse 

sensitizers for providing larger model coverage of the chemical space. The final dataset 

(dataset A) consisted of 254 compounds (127 sensitizers and 127 non-sensitizers). The 

remaining 133 sensitizers were placed to the external validation set (dataset B).

External validation set (dataset B)—Recently, a Bayesian Network Integrated Testing 

Strategy was developed to estimate skin sensitization potency by combining in silico and in 

vitro data related to skin penetration, peptide reactivity, and dendritic cell activation 

(Jaworska et al., 2011). The authors compiled LLNA data from published literature 

(Gerberick et al., 2005; Kern et al., 2010) and previously unpublished data from several 

laboratories. We retrieved 152 unique chemical compounds (dataset B) from this source 

(Jaworska et al., 2011). Then we examined the overlap between this collection (Jaworska et 

al., 2011) and our skin sensitization dataset A (see previous section). We identified 129 

compounds that were present in both datasets A and B and had only two divergent skin 

sensitization annotations (i.e., sodium lauryl sulfate and tartaric acid), demonstrating the 
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strong consistency for this retrieved data. The remaining 23 compounds from dataset B that 

were absent in our modeling set (dataset A) were thus chosen for additional external 

validation along with 133 sensitizers from ICCVAM report (ICCVAM, 2009).

Scorecard dataset (dataset C)—Scorecard is a website sponsored by GoodGuide, Inc., 

which is devoted to pollution-related problems and toxic chemicals (Scorecard, 2011). The 

Scorecard team compiled data from several sources, e.g., EPA (http://www.epa.gov/) and 

HAZMAP (http://hazmap.nlm.nih.gov), and flagged 867 compounds suspected for being 

skin or sense organ toxicants. These chemicals are suspected of causing any of the following 

effects: olfactory impairment, hearing loss, eye irritation, vision impairment, contact or 

allergic dermatitis, photosensitization, and chloracne. After removing duplicates, inorganic 

salts, and organometallic compounds, 571 unique chemical compounds (dataset C) were 

remaining. The last time this section was updated with references from 2004 (http://

scorecard.goodguide.com/health-effects/references.tcl?short_hazard_name=skin), but since 

all of this compounds do not have sensitization data, we decided to screen this dataset.

Data curation

Chemical structures were retrieved either from PubChem or ChemSpider databases using 

Chemical Abstracts Service (CAS) registry numbers and chemical names. Chemicals were 

removed if their structures could not be found. Each dataset was carefully curated (Fourches 

et al., 2010). Briefly, counterions were removed, whereas specific chemotypes such as 

aromatic and nitro groups were normalized using the ChemAxon Standardizer (v.5.3, 

ChemAxon, Budapest, Hungary, http://www.chemaxon.com). Inorganic salts, 

organometallic compounds, polymers, and mixtures were also removed. The presence of 

duplicates, i.e., identical compounds reported several times in the same dataset, is known to 

lead to over-optimistic estimations of the predictivity for developed QSAR models. 

However, the analysis of such records also gives an estimate of the dataset quality: if 

activity data for the same compound are consistent, the overall data quality is high; if there 

is a large deviation in experimental values between different records of the same compound, 

the quality is low. Thus, after structural standardization, the duplicates were identified using 

ISIDA Duplicates (Varnek et al., 2008) and HiT QSAR (Kuz’min et al., 2008) software and 

carefully analyzed. If the experimental properties associated with two duplicated structures 

were identical, then one compound was deleted. However, if their experimental properties 

were significantly different, we deleted both records from the dataset.

Cheminformatics approaches

Hierarchical Cluster Analysis—The clustering of a chemical dataset consists of 

merging compounds into distinct clusters of chemically similar molecules [see publications 

(Downs and Barnard, 2003; Mercier, 2003) for the review of the most popular clustering 

approaches used in computational chemistry]. In this study, we have employed the 

Sequential Agglomerative Hierarchical Non-overlapping (SAHN) method implemented in 

the ISIDA/Cluster program (http://infochim.u-strasbg.fr) (Varnek et al., 2007). Briefly, each 

compound represents one cluster at the start. Then, the m compounds are merged iteratively 

into clusters using their pairwise Euclidean distances stored in a squared (m * m) symmetric 

distance matrix. The two closest objects (molecules or clusters) are iteratively identified and 
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merged to form a new cluster, the distance matrix being updated with the re-computed 

distances separating the newly formed cluster and the others, according to the user-specified 

type of linkage (complete linkage in this study). The process is repeated until one cluster 

remains. The parent-child relationships between clusters result in a hierarchical data 

representation, or dendrogram. In particular, we used ISIDA/Cluster to obtain the heat map 

(see Results section) of the proximity matrix.

Dragon Descriptors—The following types of descriptors were generated using Dragon 

software (v.5.5, Talete SRL, Milan, Italy): 0D constitutional (atom and group counts), 1D 

functional groups, 1D atom-centered fragments, 2D topological descriptors, 2D walk and 

path counts, 2D autocorrelations, 2D connectivity indices, 2D information indices, 2D 

topological charge indices, 2D eigenvalue-based indices, 2D topological descriptors, 2D 

edge-adjacency indices, 2D Burden eigenvalues, 2D binary fingerprints, 2D frequency 

fingerprints, and molecular properties. The detailed discussion for these descriptors can be 

found elsewhere (Todeschini and Consonni, 2000).

SiRMS Descriptors—2D Simplex Representation of Molecular Structure (SiRMS) 

descriptors (Muratov et al., 2010) (number of tetratomic fragments with fixed composition 

and topological structure) were generated by the HiT QSAR software (Kuz’min et al., 

2008). At the 2D level, the connectivity of atoms in a simplex, atom type, and bond nature 

(single, double, triple, or aromatic) have been considered. SiRMS descriptors account not 

only for the atom type, but also for other atomic characteristics that may impact biological 

activity of molecules, e.g., partial charge, lipophilicity, refraction, and atom ability for being 

a donor/acceptor in hydrogen-bond formation (H-bond). For atom characteristics with 

continuous values (charge, lipophilicity, and refraction) the division of the entire value range 

into definite discrete groups has been carried out. The atoms have been divided into four 

groups corresponding to their (i) partial charge A≤-0.05<B≤0<C≤0.05<D, (ii) lipophilicity 

A≤-0.5<B≤0<C≤0.5<D, and (iii) refraction A≤1.5<B≤3<C≤8<D. For H-bond characteristic, 

the atoms have been divided into three groups: A (acceptor of hydrogen in H-bond), D 

(donor of hydrogen in H-bond), and I (indifferent atom). The usage of sundry variants of 

differentiation of simplex vertexes (atoms) represents the principal feature of the SiRMS 

approach (Kuz’min et al., 2007). Detailed description of HiT QSAR and SiRMS can be 

found elsewhere (Kuz’min et al., 2008; Muratov et al., 2010).

QSAR modeling—The QSAR modeling workflow used in this study includes three major 

steps (Tropsha and Golbraikh, 2007; Tropsha, 2010): (i) data curation/preparation/analysis 

(selection of compounds and descriptors), (ii) model building, and (iii) model validation/

selection. Here we followed a 5-fold external cross-validation procedure: the full set of 

compounds with known experimental activity is randomly divided into five subsets of equal 

size; then one of these subsets (20% of all compounds) is set aside as external validation set 

and the remaining four sets together form the modeling set (80% of the full set). This 

procedure is repeated five times allowing each of the five subsets to be used as external 

validation set. Models are built using the modeling set only, and it is important to emphasize 

that the external set compounds are never employed either to build and/or select the models. 

Each modeling set is divided into many internal training and test sets; then models are built 
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using compounds of each training set and applied to test set compounds to assess their 

properties. The statistical metrics used in this work are described in Supplementary 

Materials.

Best models are identified and selected according to acceptable threshold values of Correct 

Classification Rate (CCR, computed as the average of sensitivity and specificity of the 

model) for the internal test sets (called out-of-bag set in Random Forest, vide infra). Then, 

selected models are applied to the external set compounds to predict their experimental 

properties. This procedure is repeated five times to ensure that every compound is present 

once in the corresponding external test set. Since the accuracy of each model is estimated for 

compounds in the external test sets only, which were never used to derive, bias, or select 

models, this protocol ensures an objective estimation of the true external predictivity of the 

models. In addition, 1,000 rounds of Y-randomization were performed for each dataset to 

assure that the high accuracy of the models built with real data was not due to chance 

correlations.

Random Forest—Random Forest models were constructed according to the original RF 

algorithm (Breiman, 2001) using the CF software version 2.12 (Polishchuk et al., 2009). RF 

is an ensemble of single decision trees. Outputs of all trees are aggregated to obtain one final 

prediction. Each tree is grown as follows: (i) a bootstrap sample is produced from the whole 

set of N compounds to form a training set for the current tree. Compounds that are not in the 

training set of the current tree are placed in the out-of-bag (OOB) set (size of ~ N/3); (ii) the 

best split by CART algorithm (Breiman et al., 1984) among the m randomly selected 

descriptors from the entire pool in each node is chosen; (iii) each tree is then grown to the 

largest possible extent; there is no pruning. The predicted classification values are defined 

by majority voting for one of the classes. Thus, each tree predicts values for only those 

compounds that are not included in the training set of that tree (for OOB set only). Since RF 

possesses its own reliable statistical characteristics (based on OOB set prediction) which 

could be used for validation and model selection, no cross-validation was performed 

(Breiman, 2001). Thus, the final model is chosen by the lowest error for prediction of the 

OOB set. The local (tree) applicability domain approach (Artemenko et al., 2011) was used 

for all RF models developed in this study.

OECD QSAR Toolbox

The Organization for Economic Co-operation and Development (OECD) (http://

www.oecd.org/) has funded a software development project called QSAR Toolbox to 

facilitate practical application of QSAR approaches in regulatory contexts by governments 

and industry and to improve their regulatory acceptance. The QSAR Toolbox was designed 

to incorporate a variety of information on chemicals from multiple sources and to group 

these chemicals based on their molecular structures, features, and relevant biological/

toxicological effects. Skin sensitization is one of the endpoints included in the OECD 

Toolbox. Although the Toolbox is mainly intended to be used by government agencies, 

industry, etc., for assessing the potential hazards of chemicals, it is possible to retrieve the 

skin sensitization to retrieve categorical predictions (sensitizer or non-sensitizer) for new 

compounds for new compounds using the implemented AOP as described in the tutorial 
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(OECD, 2014). Thus, we compared the performance of our models with the Skin 

Sensitization module of the QSAR Toolbox.

The software was downloaded from the OECD website (http://www.qsartoolbox.org/

download.html) and it was implemented according to the instructions taken from user’s 

manual (OECD, 2014). Briefly, the structure of the target compound is derived from its 

SMILES string and the compound is profiled for protein binding (protein binding by OECD, 

protein binding potency, and protein binding alerts for skin sensitization by OASIS v1.2). 

Auto-oxidation products and skin metabolites are generated if no protein binding alert for 

the target compound. In vivo skin sensitization data are searched using the “Skin 

Sensitization” and “Skin sensitization ECETOC” databases. If the compound has LLNA 

data, then the outcome is annotated and the procedure discontinued for this compound. If 

there are no data, the category definition module is used to search for analogs. The data for 

EC3 (LLNA assay) is filled by read-across.

Since our models predict (r)LLNA results, they were compared with the outcome of the 

LLNA node of QSAR Toolbox. To make a fair comparison between our models and the 

Toolbox, we excluded 234 compounds that were present in both skin sensitization datasets 

A and B and QSAR Toolbox database (with LLNA data). Then, we applied the Toolbox to 

the 171 unique compounds from dataset A and B and compared the Toolbox predictions 

with those made by our QSAR models when these compounds were in corresponding 

external validation sets.

VEGA—VEGA is standalone software based on JAVA technology that implements several 

in silico models for toxicological endpoints. According to the skin sensitization model 

guideline of VEGA, the software implements a binary model based on eight descriptors and 

using adaptive fuzzy partition. More information about the models can be found elsewhere 

(Chaudhry et al., 2010; VEGA, 2014). VEGA Non-Iterative Client (VEGANIC) v1.0.8 was 

downloaded from http://www.vega-qsar.eu/. The SDF file with all the 387 structures from 

dataset A was imported to VEGANIC, skin sensitization model selected, and the structures 

predicted. The predictions from the report were compared with the prediction of our models. 

Structures present on VEGANIC database were excluded from comparison.

RESULTS

Cluster analysis

The heat-map representing the distance matrix and summarizing the cluster analysis of skin 

sensitization datasets A and B is shown in Figure 2. We identified two large clusters 

(annotated as d and e in Figure 2) of similar compounds in the lower right corner of the 

heat-map. All other identified clusters are much smaller (typically including 3–10 

compounds). The analysis of skin sensitization potential for the chemicals within small 

clusters of highly similar structures revealed the consistency of the activity annotations (see 

the Discussion part) and allowed us to find 30 suspicious compounds, i.e., those that had 

different activity annotations from the rest of the cluster members.
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We began by confirming the activity annotations for the suspicious compounds in the 

ICCVAM reports, and subsequently searched for additional published evidence that could 

confirm or refute their activity. The data for our skin sensitization models (datasets A and B) 

were collected from the ICCVAM report on the rLLNA (ICCVAM, 2009) and from the 

study of Jaworska et al. (2011), which compiled LLNA and rLLNA test results from 

different sources. Our literature search revealed that there is a lack of data on the potential 

risk of compounds that cause skin sensitization, and the references found during our 

literature search (Gerberick et al., 2005; Kern et al., 2010) were largely cited in the 

ICCVAM report. We found additional skin sensitization data for only eight out of the 30 

suspicious compounds (bromohexane and bromononane (Basketter et al., 1992; Siegel et al., 

2009), chlorobenzene (ECHA, 2010a), 3,4-dihydrocoumarin (Gerberick et al., 2004), 

ethylenediamine (ECHA, 2010b), 2-methoxy-4-methylphenol (Gerberick et al., 2009), 

octanoic acid (Johansson et al., 2011), and oxalic acid (ECHA, 2010c). All annotations for 

these compounds were confirmed in the literature, except for the oxalic acid, which was 

annotated as a sensitizer in the Dataset A but appeared to be non-sensitizer; the 

corresponding label was corrected in our database. Concluding this section, we shall note 

that the majority of these suspicious compounds represent interesting cases of activity cliffs, 

i.e., compounds that are highly structurally similar to their close structural analogs, but 

possess very different activity (Maggiora, 2006).

QSAR modeling

The statistical characteristics of the developed QSAR models are summarized in Table 1. 

Plot of ROC curves are available in Supplementary Materials (Figure S1). Two types of RF 

models (with SiRMS or Dragon descriptors) were developed with high CCR = 0.71–0.76. 

The use of AD resulted in the increase of CCR (by 9–12%) but the decrease of coverage (by 

42–48%). Because two types of models were built, a consensus prediction was generated by 

averaging the predicted value for each compound from individual models, which therefore 

could be equal to 0, 0.5, or 1. All predictions equal to 0.5 were considered inconclusive and 

were discarded. In total, we have developed three consensus models with various AD 

considerations (Table 1): (i) Model 5 was an average of predictions made by models 1 and 3 

(Dragon and SiRMS, within AD of either model); (ii) Model 6 was an average of predictions 

made by models 2 and 4 (Dragon and SiRMS, both without AD); (iii) Model 7 was an 

average of predictions made by models 1 and 3 (Dragon and SiRMS, within AD of both 

models). The statistics summary given in Table 1 shows that the use of the AD increases the 

CCR for both SiRMS (from 0.71 to 0.83) and Dragon (from 0.76 to 0.85) models, as well as 

for consensus model 5 (from 0.79 to 0.82), but also results in a decreased coverage (from 

0.82 to 0.79), i.e., reduced number of compounds in the external dataset considered to be 

covered by the model. The consensus model 5 presented CCR slightly lower with models 1 

and 3 (from 0.83/0.85 to 0.82), but the coverage increased much, revealing the benefit of 

consensus modeling (from 0.58/0.52 to 0.70). The model with the highest prediction power 

(model 7, CCR = 0.88) had the most conservative AD estimation but only 39% coverage.

Models developed for dataset A were applied to predict annotations for compounds included 

in dataset B (the external validation dataset), and the metrics of their prediction accuracy are 

summarized in Table 2. Consensus model 5 was able to correctly identify sensitizers with 
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sensitivity of 0.65 (coverage of 50%), while the sensitivity of the consensus rigor (model 7) 

was the highest (0.86) albeit for the smallest fraction of compounds in Dataset B within the 

AD for model 7 (limited coverage of 24%). We included formal values for specificity and 

CCR in Table 2 but in all fairness, because Dataset B included a very small number of non-

sensitizers those values should not be viewed as significant. However, one should appreciate 

the relatively high sensitivity values given the challenge (by design) to predict accurately 

sensitizers selected from the original ICCVAM datasets for their similarity to non-

sensitizers.

We also analyzed the relative importance of the descriptors incorporated in the selected 

models. For SiRMS descriptors the electrostatic factors were the most important (50%); they 

were followed by atom individuality (28%) and hydrophobicity (16%). Number of donors of 

hydrogen bonds and dispersion forces contribute 2% each. For the Dragon set, augmented 

atom codes (ACC) and topological polar surface area using N,O polar contributions 

(TPSA_NO) had 9% and 7% of contribution. Average connectivity index chi-5 (X5A) had a 

contribution of 5% and Broto-Moreau autocorrelation of a topological structure - lag 4 

(ATS4m) and average valance connectivity index chi-5 (X5Av) had a contribution of 3%. 

All the other descriptors contributed 2% or less.

Comparison of QSAR vs.OECD QSAR Toolbox sensitization predictions

To accomplish a fair comparison between our models and the OECD QSAR Toolbox, we 

searched for the overlap between datasets A and B and the skin sensitization database used 

to develop the OECD skin sensitization module. We found 234 compounds present in both 

databases and excluded them from the comparison. It is important to note that 221 out of the 

234 compounds had identical skin sensitization annotations in both databases, resulting in 

high concordance of 94.4%. Thus, we screened a set of 171 unique compounds from dataset 

A and B that were absent in the QSAR Toolbox database for the relevant prediction of EC3 

and compared the results with the predictions from our QSAR models when these 

compounds were in external test sets (allowing a fair comparison between the two 

approaches). In total, 81 compounds were not predicted by QSAR Toolbox (10 compounds), 

by model 5 (61 compounds) or by both approaches (10 compounds), and thus were excluded 

from consideration to ensure that both approaches were compared using the same external 

compounds. The prediction of QSAR Toolbox was not made when there were no sufficient 

data of analogs to make the prediction or the “unreliable” message was received because the 

log Kow for the target chemical was outside the range of analogs. Compounds not processed 

by model 5 were those out of the AD. In total, 90 compounds including 38 sensitizers and 52 

non-sensitizers were used for comparing the performance of the two models.

The results show (Table 4) that QSAR Toolbox slightly outperformed our model 5 in 

sensitivity (53% vs. 50%, respectively), which was very low for both models, but the 

Toolbox failed to predict non-sensitizers correctly, which is indicated by a large number of 

false positives as estimated by the low Positive Predictive Value (PPV; cf. Table 4). The 

complete list of predictions is available in the Supplemental Materials. Our model 5 

predicted all but four non-sensitizers correctly affording a classification specificity of 98% 
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(compared to 38% obtained by the Toolbox). Overall the CCR of our approach was higher 

than that of the OECD software (74% vs. 46%).

Comparison of QSAR vs.VEGA sensitization predictions

The comparison of the developed QSAR models with VEGA was performed following the 

same approach as in the previous section. We found 158 (~96% concordance of skin 

sensitization annotations) compounds present in both databases and excluded them from the 

comparison. We also excluded compounds with low reliability (analogue of AD estimation) 

from VEGA. In total 186 compounds were not predicted by VEGA (85 compounds), by 

model 5 (38 compounds) or by both approaches (63 compounds), and were excluded to 

ensure that both approaches were compared using the same external compounds. The 

statistical characteristics for predicting the remaining 61 compounds (45 sensitizers and 16 

non-sensitizers) are shown in Table 5. The complete list of predictions is available in the 

Supplemental Materials. The results shown in Table 5 suggest that VEGA outperformed our 

models in terms of sensitivity (93% vs. 84%), but model 5 had significantly higher 

specificity (75% vs 25%) and better Positive and Negative Predictive Values (90% vs 78% 

and 78–57% respectively) than Vega.

DISCUSSION

Cluster analysis

In this section we present the detailed analysis of clusters of structurally similar chemicals. 

Cluster a in Figure 2 contains 26 compounds, mostly phenylpropanoids. The latter were 

annotated as sensitizers except for isopropyl eugenol. The only difference between this 

compound and its closest structural neighbor, isopropyl isoeugenol, is the position of the 

double bond in the propyl moiety attached to the benzene ring. The second nearest neighbor, 

eugenol, has an oxymethyl group instead of the oxyisopropyl substituent in position 1 of the 

benzene ring (see Table 6). Thus, isopropyl eugenol is the perfect example of an activity 

cliff and, as expected, this compound was mispredicted by our models. Several cases where 

slight changes in chemical moieties make considerable changes in the activity/toxicity of 

compounds are well-known. For example, non-toxic caffeine and hepatotoxic theophylline 

differ by a methyl group only (Low et al., 2011).

Another cluster was formed by dicarboxylic acids (see cluster c in Figure 2). All of them 

were non-sensitizers, except for oxalic acid (also mispredicted by our models). Additional 

information regarding oxalic acid revealed that this compound is, in fact, a non-sensitizer 

(ECHA, 2010c), which explains why it was mispredicted by our models.

All of bromoalkanes (clusters d and e on Figure 2) were annotated as sensitizers except 

bromononane. We suspected that bromononane could be mis-annotated, so we searched for 

published evidence that would support this hypothesis. An early study evaluated the 

sensitization potential of bromoalkanes and showed that bromobutane and bromohexane 

were non-sensitizers, and that from bromononane to bromohexadecane the sensitization 

potencial is increased with the length of the carbon chain, and for molecules with a longer 

alkyl chain the potential starts to decrease (Basketter et al., 1992). A more recent study 
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evaluating physicochemical properties and solubility of bromoalkanes found that the case of 

bromoalkanes is particularly complicated because, in addition to lipid solubility, multiple 

factors including vehicle, solvation, and retention on the skin surface, contribute to the 

apparent potency of 1-bromoalkanes in the LLNA (Siegel et al., 2009). The same authors 

also found that logP has no direct influence on bromoalkanes and that results of LLNA for 

this class of compounds can be affected by the compound volatility. In other words, lack of 

potency or any observable stimulation in the LLNA by several of the semivolatile 

bromoalkanes (C6-C11) is most likely due to a loss from volatility (from the skin surface 

and back out of the stratum corneum) competing with absorption/distribution into the 

epidermis and bromoalkane haptenation. In another study (Li et al., 2005), the authors also 

faced the problem with skin sensitization potential of bromoalkanes, e.g., bromononane was 

mispredicted in all their models because of some uncertainties with its actual activity. We 

concur with observation reported by (Li et al., 2005; Siegel et al., 2009) that bromoalkanes 

represent an interesting and difficult case and we can confidently hypothesize that the 

aforementioned divergence between bromohexane and bromononane may be an artifact of 

evaluating these compounds using LLNA. Within the iodoalkanes, both iodohexane (6C) 

and iodooctadecane (18C) were non-sensitizers, whereas iodononane (9C), iododecane 

(10C), iodotetradecane (14C), and iodohexadecane (16C) were annotated as sensitizers. At 

first glance, it seems that the very long chain of iodooctadecane can explain the decrease of 

the permeability through the skin (or the binding affinity to skin proteins). If this theory 

were correct, bromodocosane (22 carbons) would be a non-sensitizer since the length of the 

chain is bigger than for iodooctadecane (18 carbons) and bromine has similar electronic 

features with iodine. However, bromodocosane is annotated as a sensitizer in our database. 

Even though they have not shown sensitization responses at the highest test concentrations 

(Roberts et al., 2007a), iodohexane and iodooctadecane may be sensitizers that were not 

detected due to their loss because of volatility. Lacking experimental evidence of 

sensitization, we preferred to keep them as non-sensitizers. The inconsistency within the 

same chemical cluster led us to conclude that modeling of haloalkanes is challenging due to 

the presence of activity cliffs and/or experimental difficulties. As a consequence, some of 

these compounds are likely to be mispredicted by our models.

Although 3,4-dihydrocoumarin was annotated as a sensitizer, two similar compounds – 

coumarin and 6-methylcoumarin – were marked as non-sensitizers (see Table 6 and cluster a 
in Figure 2). The only difference between the 3,4-dihydrocoumarin and coumarin is the 

absence of the double bond between carbon atoms 3 and 4. It has been suggested that 3,4-

dihydrocoumarin is a prohapten, i.e., it requires a biotransformation to initiate its ability to 

react with nucleophilic amino acids such as cysteine in skin proteins and consequently cause 

skin sensitization (Gerberick et al., 2004). We also found additional evidences (Roberts et 

al., 2007a) that the difference in the sensitization potency of 3,4-dihydrocoumarin vs. 

coumarin and 6-methylcoumarin could be explained by the reactivity of these compounds: 

the 3,4-dihydrocoumarin heterocyclic ring is partially rigid and it reacts more readily as an 

acylating agent. Thus, 3,4-dihydrocoumarin represents a classical example of an activity 

cliff and it is not surprising that this compound is mispredicted by our models.
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When we analyzed the variable importance, we noted that electrostatic SiRMS descriptors 

were very important (50% contribution). We believe the significance of this type of 

descriptors is related with protein binding, since compounds need to bind to residues of 

nucleophilic amino acids such as cysteine and lysine to cause skin sensitization (Lepoittevin, 

2011). TPSA also had high importance, which is consistent with the cell permeability for 

skin sensitization. A more profound analysis relating skin sensitization and permeability is 

made on the second part of this work (Alves et al., 2014).

Comparison with the OECD QSAR Toolbox

The OECD QSAR Toolbox v3.2 incorporates an AOP protocol for assessing skin 

sensitization. This protocol provides the user with the experimental data or allows prediction 

for the following endpoints: protein binding alerts; in chemico peptide depletion assay 

DPRA (Cys); in chemico peptide depletion assay DPRA (Lys); in chemico glutathione 

depletion assay GSH (RC50); in chemico Adduct formation assay LC-MS; in vitro 

keratinocyte ARE (EC1.5, EC2, EC3), in vitro dendritic cell activity assay h-CLAT; in vitro 

dendritic cell activity assay MUSST; in vivo organ response (LLNA); and in vivo organ 

response (GPMT). Each node of this AOP provides the user with the experimental data or 

offers a possibility for predicting its property. Although this information could be useful for 

the user, the software does not provide a final verdict (sensitizer or non-sensitizer), leaving 

the decision to the user. Because our models predict (r)LLNA results, we compared our 

models only with the LLNA node of QSAR Toolbox. This node provides a category 

prediction (positive or negative) by read-across (OECD, 2014).

The benchmarking results of our skin sensitization models in comparison with the OECD 

QSAR Toolbox showed the significantly higher specificity and CCR of our models but their 

slightly lower sensitivity (Table 4). However, these metrics do not completely describe the 

model performance for predicting the target property for new compounds, which is the 

ultimate goal of every QSAR model. Thus, we have calculated both positive and negative 

predicted values (PPV from Equation 5 and NPV from Equation 6, see Supplemental 

Materials) to estimate the probability of accurate annotation of a new compound as a 

sensitizer or non-sensitizer. As obvious from Table 4, if a compound is predicted as a 

sensitizer by our model 5, there is high probability (PPV=95%) that this compound is 

actually a sensitizer; similarly, there is 73% chance that a compound would be a non-

sensitizer if it was predicted as non-sensitizer. Meanwhile, OECD QSAR Toolbox is 

generating predictions with the probability that a compound predicted as a sensitizer is 

indeed a sensitizer is less than random (PPV=38%). Besides, the probability of a compound 

predicted as non-sensitizer to be actual non-sensitizer is not really better (Specificity = 38%; 

NPV=53%). Undoubtedly, read-across is inexpensive, easy, structurally transparent, and 

easily interpretable. However, our results show that when using the LLNA node of the 

QSAR Toolbox for evaluating chemical hazards, one can end up with a very high error rate 

ultimately leading to the withdrawal of many potentially useful and harmless compounds 

from the development because of false sensitization alerts or, conversely, selecting unsafe 

compounds for further development. Although additional information may be obtained when 

following the AOP described in the tutorial (OECD, 2014) for a target compound, our 

results shows that it may be premature to rely solely on the read-across prediction at this 
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time. The reason for the relatively low performance of read across is likely due to more 

complex relationships between the entire chemical structure and the skin sensitization 

potential than can be captured by identifying selected chemical functional groups as alerts. 

At the same time, statistical QSAR models built with molecular descriptors seem to capture 

structural determinants of skin sensitization intrinsically although in general it is harder to 

interpret these models in simple structural terms. In our opinion, it would be prudent to 

develop hybrid approaches integrating read across and statistical QSAR modeling to 

improve both predictivity and interpretability of models. A recently develop Chemical 

Biological Read Across (CBRA) method (Low et al., 2013) is a step in this direction.

Analysis of sensitizers mispredicted by our models

Because our model 5 suffered from low sensitivity, we wanted to investigate the possible 

reasons of why we encountered a high number of false negatives. We found that as much as 

one third of sensitizers mispredicted by model 5 (14 out of 43) could be considered as 2D 

activity cliffs. These compounds are: (i) seven weak sensitizers (4-bromo-1-

phthalimidopentane, 2-benzyl-tert-butylamino-3’-hydroxymethyl-4’-hydroxyaceto-phenone, 

1,1-dimethylethyl3-[[[[(3s)-2,3,4,5-tetrahydro-1-[2-[(1-methylethyl)phenylamino]-2-

oxoethyl]-2,4-dioxo-5-phenyl-1H-1,5-benzodiazepin-3-yl]amino] carbonyl]amino]benzoate, 

5-methoxy-6-trifluoromethyl-2,3-dihydro-1H–indole, oxalic acid, bromohexane, and 3,4-

dichloroaniline hydrochloride); (ii) two moderate sensitizers (2,6-dimethoxy-4-methyl-8-

nitro-5-[3-(trifluoromethyl)-phenoxy]quinolone, and veratraldehyde); (iii) one strong 

sensitizer (benzylbromide); and (iv) four other compounds (1-(prop-2-enoyloxy)-2-[(prop-2-

enoyloxy)methyl]pentan-3-yl-prop-2-enoate, azithromycin, 5-chloro-2,6-dimethoxy-4-

methyl-8-nitroquinoline, and 1,5-dimethyl-3-(1-oxo-2-propenyl)-4-phenyl-2-

imidazolidinone), for which the level of skin sensitization is not available. The Tanimoto 

coefficient (Tc) for these compounds compared to their closest nearest neighbors in the 

modeling set was usually greater than 0.9 and no less than 0.75 (see Table S3 for more 

details). Most of these 14 compounds, e.g., bromohexane and benzylbromide were already 

discussed in the cluster analysis section as being very difficult to predict by QSAR models 

because of the activity cliffs phenomenon. For instance, the difference between the 

sensitizer veratraldehyde and its nearest neighbors annotated as non-sensitizers, vanillin and 

3-hydroxy-4-methoxybenzaldehyde is just due to a substitution of one chemical group 

(oxymethyl instead of hydroxy group). The compound 2-benzyl-tert-butylamino-3’-

hydroxymethyl-4’-hydroxyaceto-phenone was marked as a sensitizer, whereas its closest 

neighbor 2-(benzyl)tert-butyl)amino)-1-(alpha,4-dihydroxy-m-tolyl)ethane (Tc=0.92) is a 

non-sensitizer. After checking both structures, we believe the difference in the activity is 

determined by the protonation of the latter compound. Another interesting example of an 

activity cliff is 5-chloro-2,6-dimethoxy-4-methyl-8-nitroquinoline. The only difference 

between this compound and its closest analog, i.e., non-sensitizer 5-chloro-2,6-dimethoxy-4-

methylquinoline, is a nitro group, which is directly responsible for the appearance of the 

sensitization potency in this case. Many of the aforementioned “activity cliffs” may seem 

obvious and could be correctly assessed by most organic chemists familiar with mechanism-

based SARs. However, statistically-based QSAR models developed using hundreds of 

compounds are treating such compounds as activity cliffs leading to erroneous predictions. 
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This could be one of the reasons why many sensitizers are poorly predicted by our models 

(and most likely by read across methods).

In addition to activity cliffs we found five cases, i.e., β-phellandrene (moderate sensitizer), 

sodium lauryl lactylate (weak sensitizer), 2,2-bis-[4-(2-

hydroxy-3methacryloxypropoxy)phenyl)]-propane (weak sensitizer), 2-hydroxyethyl 

acrylate (moderate sensitizer), and 3-ethoxy-1-(2’,3’,4’,5’-tetramethylphenyl)propane-1,3-

dione (weak sensitizer) (see Table S3), that were erroneously predicted by our models as 

non-sensitizers. Although these compounds do belong to structural clusters containing both 

sensitizers and non-sensitizers, they have rather similar (Tc=0.75–0.96) neighbors that are 

sensitizers. β-phellandrene belonging to the cluster of terpenes is a good example of an 

erroneously predicted sensitizer. Sensitization potential of these compounds depends on the 

mutual positions of substituents in the terpene ring. In this case, limonene - the most 

structurally similar neighbor (Tc=0.96) of β-phellandrene is actually a sensitizer, but the 

second nearest neighbor (Tc=0.94), 4-isopropyl-1-methylene-cyclohexane, is annotated as 

being non-sensitizer. This high similarity with a sensitizer and a non-sensitizer reinforces the 

difficulty of accurately predicting terpenes. Previous studies have shown that terpenes are 

not allergenic themselves, but they oxidize when in contact with air to produce allergenic 

compounds (Matura et al., 2005). Thus, the oxidation impurities that have been formed at 

some stage in their synthesis or storage are responsible for the skin sensitization of terpenes. 

In this case the potency of skin sensitization depends on how much oxidation impurities 

terpenes contain.

Seven other mispredicted sensitizers, Bandrowski’s base, 3,3’,4’,5-tetrachloro-salicylanilide, 

dinocap, 7-[(4z)-3-(aminomethyl)-4-(methoxyimino)-1pyrrolidinyl]-1-cyclopropyl-6-

fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, monomethane-sulfonate, 

ethylenediamine, 8-chloro-3-pentyl-3,7-dihydro-1h–purine-2,6-dione, and dimethyl 

sulfoxide (see Table S3), were very dissimilar to the modeling set (Tc<0.5). Although such a 

high global structural dissimilarity could be one of the main reasons for the incorrect 

prediction of these compounds by our models, these compounds still fell within the 

applicability domain of our models.

We have noticed also several instances of classification “border effects”, i.e., when the 

experimental skin sensitization potency of a given compound is very close to the potency 

cutoff used to discriminate sensitizers from non-sensitizers: for instance, aniline with an 

EC3 of 89%, which is very close to the 100% EC3 cutoff. Border effects could explain why 

these compounds were mispredicted. Only seven out of 41 mispredicted compounds were 

annotated as strong or extreme sensitizers, 29 other compounds were annotated as weak (18) 

and moderate (11) sensitizers. The five remaining compounds have no data regarding their 

skin sensitization potency. Overall, 12 out of 13 compounds were mispredicted because of 

border effects.

Virtual screening of the Scorecard dataset (dataset C)

The initial analysis of the Scorecard dataset revealed 55 chemicals already present in our 

modeling set: 42 compounds were annotated as sensitizers and 13 as non-sensitizers. Thus, 

we have applied our QSAR models to the remaining 516 Scorecard compounds. Using 
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model 5, 82 compounds were predicted as sensitizers and 166 compounds as non-sensitizers 

(the remaining compounds were outside of the AD). Model 7 resulted in 27 sensitizers and 

29 non-sensitizers with full agreement between SiRMS and Dragon models. As expected, 

the use of highly conservative AD decreased the overall coverage to 11% but the reliability 

of the prediction is expected to be high. All compounds and corresponding predictions are 

listed in Supplemental Materials (Sensitization_Data_Models_Results.xlsx). The selection 

of a small number of compounds from the Scorecard database illustrates the utility of QSAR 

models for prioritizing environmental chemicals of concern for targeted biological testing.

CONCLUSIONS

We have compiled, curated, and integrated the largest publicly available datasets of skin 

sensitization for diverse chemicals. Cluster analysis revealed high consistency of reported 

experimental data as well as helped identifying 30 “suspicious” compounds with potentially 

erroneous data. Indeed, we found additional literature evidence to correct mis-annotated skin 

sensitization potential for two compounds.

We have obtained robust and predictive QSAR models of skin sensitization. Our skin 

sensitization models showed significantly higher specificity and CCR compared to the 

OECD QSAR Toolbox but lower sensitivity and coverage. However, the analysis of positive 

and negative prediction values showed that our models almost guaranteed (PPV = 85%) that 

if a compound was classified as a sensitizer, then the compound was actually a sensitizer. 

Thus, our models could be regarded as reliable tools for identifying putative sensitizers in 

the first step of multi-tiered testing strategy. Meanwhile, there is 79% chance that a 

compound would be non-sensitizer if predicted as non-sensitizer. The relatively high 

external predictive power of our models suggests that they can be considered for regulatory 

decision support although corresponding authorities may require more certainty to confirm 

negative results by following the QSAR with additional in vitro or animal tests. In 

comparison, the probability of a compound to be correctly predicted as sensitizer or non-

sensitizer by the OECD QSAR Toolbox is not better than random (PPV=0.38, NPV=0.53). 

The extensive mechanistic understanding of skin sensitization and its’ AOP has enabled the 

development of various non-animal test methods associated with one or more of the AOP 

key events, and the complexity of the underlying biology has produced the hypothesis that 

no single measurement will be sufficient to predict sensitizer potency. Therefore, it is 

becoming accepted that only a combination of several methods in an integrated strategy will 

allow skin sensitization assessment without the need for animal testing, and QSAR models 

such as those presented here will be a critical part of such strategies.

In summary, we have built statistically significant and externally predictive QSAR models 

of skin sensitization that can be used by the research community and regulatory scientists to 

flag potentially unsafe compounds in chemical inventories. For instance, virtual screening of 

the Scorecard dataset with the most conservative but also most reliable model built in this 

study identified 27 potential skin sensitizers that may be candidates for targeted testing. All 

curated datasets, models, and results developed in this study have been made publicly 

available at the Chembench Web Portal (http://chembench.mml.unc.edu).
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Figure 1. 
General workflow developed in this work.
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Figure 2. 
Cluster analysis of compounds included in the skin sensitization datasets A and B: 

dendrogram and heat map of the distance matrix colored according to structural similarity 

(blue/violet = similar; yellow/red = dissimilar).
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Table 6

Examples of "suspicious" compounds in dataset A identified by cluster analysis.
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