128 research outputs found

    The Illusion of Being Located in Dynamic Virtual Environments. Can Eye Movement Parameters Predict Spatial Presence?

    Get PDF
    Attention allocation towards the mediated environment is assumed to be a necessary precondition to feel localized in a virtual world. In presence research, however, the potential of eye movement research has not been fully exploited so far. In this study, participants (N=44) rode on a virtual roller coaster simulation. We compare participants scoring high versus low on presence. During the ride, the eye movements and subjective ex post presence judgments were assessed. We found high sensations of presence to be associated with fewer fixations and a tendency towards longer fixation durations. In contrast to the immersive tendency trait, eye movement parameters can predict presence

    Persistent Borrelia Infection in Patients with Ongoing Symptoms of Lyme Disease

    Get PDF
    Introduction: Lyme disease is a tickborne illness that generates controversy among medical providers and researchers. One of the key topics of debate is the existence of persistent infection with the Lyme spirochete, Borrelia burgdorferi, in patients who have been treated with recommended doses of antibiotics yet remain symptomatic. Persistent spirochetal infection despite antibiotic therapy has recently been demonstrated in non-human primates. We present evidence of persistent Borrelia infection despite antibiotic therapy in patients with ongoing Lyme disease symptoms. Methods: In this pilot study, culture of body fluids and tissues was performed in a randomly selected group of 12 patients with persistent Lyme disease symptoms who had been treated or who were being treated with antibiotics. Cultures were also performed on a group of ten control subjects without Lyme disease. The cultures were subjected to corroborative microscopic, histopathological and molecular testing for Borrelia organisms in four independent laboratories in a blinded manner. Results: Motile spirochetes identified histopathologically as Borrelia were detected in culture specimens, and these spirochetes were genetically identified as Borrelia burgdorferi by three distinct polymerase chain reaction (PCR)-based approaches. Spirochetes identified as Borrelia burgdorferi were cultured from the blood of seven subjects, from the genital secretions of ten subjects, and from a skin lesion of one subject. Cultures from control subjects without Lyme disease were negative for Borrelia using these methods. Conclusions: Using multiple corroborative detection methods, we showed that patients with persistent Lyme disease symptoms may have ongoing spirochetal infection despite antibiotic treatment, similar to findings in non-human primates. The optimal treatment for persistent Borrelia infection remains to be determined

    The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems

    Get PDF
    HT-ATES (high-temperature aquifer thermal energy storage) systems are a future option to shift large amounts of high-temperature excess heat from summer to winter using the deep underground. Among others, water-bearing reservoirs in former hydrocarbon formations show favorable storage conditions for HT-ATES locations. This study characterizes these reservoirs in the Upper Rhine Graben (URG) and quantifies their heat storage potential numerically. Assuming a doublet system with seasonal injection and production cycles, injection at 140 °C in a typical 70 °C reservoir leads to an annual storage capacity of up to 12 GWh and significant recovery efficiencies increasing up to 82% after ten years of operation. Our numerical modeling-based sensitivity analysis of operational conditions identifies the specific underground conditions as well as drilling configuration (horizontal/vertical) as the most influencing parameters. With about 90% of the investigated reservoirs in the URG transferable into HT-ATES, our analyses reveal a large storage potential of these well-explored oil fields. In summary, it points to a total storage capacity in depleted oil reservoirs of approximately 10 TWh a−1, which is a considerable portion of the thermal energy needs in this area

    Evaluation of In-vitro Antibiotic Susceptibility of Different Morphological Forms of Borrelia burgdorferi

    Get PDF
    Background: Lyme disease is a tick-borne illness caused by the spirochete Borrelia burgdorferi. Although antibiotic therapy is usually effective early in the disease, relapse may occur when administration of antibiotics is discontinued. Studies have suggested that resistance and recurrence of Lyme disease might be due to formation of different morphological forms of B. burgdorferi, namely round bodies (cysts) and biofilm-like colonies. Better understanding of the effect of antibiotics on all morphological forms of B. burgdorferi is therefore crucial to provide effective therapy for Lyme disease. Methods: Three morphological forms of B. burgdorferi (spirochetes, round bodies, and biofilmlike colonies) were generated using novel culture methods. Minimum inhibitory concentration and minimum bactericidal concentration of five antimicrobial agents (doxycycline, amoxicillin, tigecycline, metronidazole, and tinidazole) against spirochetal forms of B. burgdorferi were evaluated using the standard published microdilution technique. The susceptibility of spirochetal and round body forms to the antibiotics was then tested using fluorescent microscopy (BacLight™ viability staining) and dark field microscopy (direct cell counting), and these results were compared with the microdilution technique. Qualitative and quantitative effects of the antibiotics against biofilm-like colonies were assessed using fluorescent microscopy and dark field microscopy, respectively. Results: Doxycycline reduced spirochetal structures ∼90% but increased the number of round body forms about twofold. Amoxicillin reduced spirochetal forms by ∼85%–90% and round body forms by ∼68%, while treatment with metronidazole led to reduction of spirochetal structures by ∼90% and round body forms by ∼80%. Tigecycline and tinidazole treatment reduced both spirochetal and round body forms by ∼80%–90%. When quantitative effects on biofilmlike colonies were evaluated, the five antibiotics reduced formation of these colonies by only 30%–55%. In terms of qualitative effects, only tinidazole reduced viable organisms by ∼90%. Following treatment with the other antibiotics, viable organisms were detected in 70%–85% of the biofilm-like colonies. Conclusion: Antibiotics have varying effects on the different morphological forms of B. burgdorferi. Persistence of viable organisms in round body forms and biofilm-like colonies may explain treatment failure and persistent symptoms following antibiotic therapy of Lyme disease

    Association of spirochetal infection with Morgellons disease

    Get PDF
    Morgellons disease (MD) is an emerging multisystem illness characterized by skin lesions with unusual filaments embedded in or projecting from epithelial tissue. Filament formation results from abnormal keratin and collagen expression by epithelial-based keratinocytes and fibroblasts. Recent research comparing MD to bovine digital dermatitis, an animal infectious disease with similar skin features, provided clues that spirochetal infection could play an important role in the human disease as it does in the animal illness. Based on histological staining, immunofluorescent staining, electron microscopic imaging and polymerase chain reaction, we report the detection of Borrelia spirochetes in dermatological tissue of four randomly-selected MD patients. The association of MD with spirochetal infection provides evidence that this infection may be a significant factor in the illness and refutes claims that MD lesions are self-inflicted and that people suffering from this disorder are delusional. Molecular characterization of the Borrelia spirochetes found in MD patients is warranted

    Exploring the Association Between Morgellons Disease and Lyme Disease: Identification of Borrelia Burgdorferi in Morgellons Disease Patients

    Get PDF
    Morgellons disease (MD) is a complex skin disorder characterized by ulcerating lesions that have protruding or embedded filaments. Many clinicians refer to this condition as delusional parasitosis or delusional infestation and consider the filaments to be introduced textile fibers. In contrast, recent studies indicate that MD is a true somatic illness associated with tickborne infection, that the filaments are keratin and collagen in composition and that they result from proliferation and activation of keratinocytes and fibroblasts in the skin. Previously, spirochetes have been detected in the dermatological specimens from four MD patients, thus providing evidence of an infectious process. Methods & Results Based on culture, histology, immunohistochemistry, electron microscopy and molecular testing, we present corroborating evidence of spirochetal infection in a larger group of 25 MD patients. Irrespective of Lyme serological reactivity, all patients in our study group demonstrated histological evidence of epithelial spirochetal infection. Strength of evidence based on other testing varied among patients. Spirochetes identified as Borrelia strains by polymerase chain reaction (PCR) and/or in-situ DNA hybridization were detected in 24/25 of our study patients. Skin cultures containing Borrelia spirochetes were obtained from four patients, thus demonstrating that the organisms present in dermatological specimens were viable. Spirochetes identified by PCR as Borrelia burgdorferi were cultured from blood in seven patients and from vaginal secretions in three patients, demonstrating systemic infection. Based on these observations, a clinical classification system for MD is proposed. Conclusions Our study using multiple detection methods confirms that MD is a true somatic illness associated with Borrelia spirochetes that cause Lyme disease. Further studies are needed to determine the optimal treatment for this spirochete-associated dermopathy. Keywords: Morgellons disease; Lyme disease; Borrelia burgdorferi ; Spirochetes; Dermopath

    Canine Filamentous Dermatitis Associated with Borrelia Infection

    Get PDF
    Background: Although canine clinical manifestations of Lyme disease vary widely, cutaneous manifestations are not well documented in dogs. In contrast, a variety of cutaneous manifestations are reported in human Lyme disease caused by the spirochete Borrelia burgdorferi. A recently recognized dermopathy associated with tickborne illness known as Morgellons disease is characterized by brightly-colored filamentous inclusions and projections detected in ulcerative lesions and under unbroken skin. Recent studies have demonstrated that the dermal filaments are collagen and keratin biofibers produced by epithelial cells in response to spirochetal infection. We now describe a similar filamentous dermatitis in canine Lyme disease. Methods and Results: Nine dogs were found to have cutaneous ulcerative lesions containing embedded or projecting dermal filaments. Spirochetes characterized as Borrelia spp. were detected in skin tissue by culture, histology, immunohistochemistry, polymerase chain reaction (PCR) and gene sequencing performed at five independent laboratories. Borrelia DNA was detected either directly from skin specimens or from cultures inoculated with skin specimens taken from the nine canine study subjects. Amplicon sequences from two canine samples matched gene sequences for Borrelia burgdorferi sensu stricto. PCR amplification failed to detect spirochetes in dermatological specimens from four healthy asymptomatic dogs. Conclusions: Our study provides evidence that a filamentous dermatitis analogous to Morgellons disease may be a manifestation of Lyme disease in domestic dogs
    • …
    corecore