773 research outputs found

    Point force manipulation and activated dynamics of polymers adsorbed on structured substrates

    Full text link
    We study the activated motion of adsorbed polymers which are driven over a structured substrate by a localized point force.Our theory applies to experiments with single polymers using, for example, tips of scanning force microscopes to drag the polymer.We consider both flexible and semiflexible polymers,and the lateral surface structure is represented by double-well or periodic potentials. The dynamics is governed by kink-like excitations for which we calculate shapes, energies, and critical point forces. Thermally activated motion proceeds by the nucleation of a kink-antikink pair at the point where the force is applied and subsequent diffusive separation of kink and antikink. In the stationary state of the driven polymer, the collective kink dynamics can be described by an one-dimensional symmetric simple exclusion process.Comment: 7 pages, 2 Figure

    Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness

    Get PDF
    DNA and other biopolymers differ from classical polymers due to their torsional stiffness. This property changes the statistical character of their conformations under tension from a classical random walk to a problem we call the `torsional directed walk'. Motivated by a recent experiment on single lambda-DNA molecules [Strick et al., Science 271 (1996) 1835], we formulate the torsional directed walk problem and solve it analytically in the appropriate force regime. Our technique affords a direct physical determination of the microscopic twist stiffness C and twist-stretch coupling D relevant for DNA functionality. The theory quantitatively fits existing experimental data for relative extension as a function of overtwist over a wide range of applied force; fitting to the experimental data yields the numerical values C=120nm and D=50nm. Future experiments will refine these values. We also predict that the phenomenon of reduction of effective twist stiffness by bend fluctuations should be testable in future single-molecule experiments, and we give its analytic form.Comment: Plain TeX, harvmac, epsf; postscript available at http://dept.physics.upenn.edu/~nelson/index.shtm

    Stretching Instability of Helical Spring

    Full text link
    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to step-like contraction and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure

    Morphology and spacing of river meander scrolls

    Get PDF
    Many of the world’s alluvial rivers are characterised by single or multiple channels that are often sinuous and that migrate to produce a mosaicked floodplain landscape of truncated scroll (or point) bars. Surprisingly little is known about the morphology and geometry of scroll bars despite increasing interest from hydrocarbon geoscientists working with ancient large meandering river deposits. This paper uses remote sensing imagery, LiDAR data-sets of meandering scroll bar topography, and global coverage elevation data to quantify scroll bar geometry, anatomy, relief, and spacing. The analysis focuses on preserved scroll bars in the Mississippi River (USA) floodplain but also compares attributes to 19 rivers of different scale and depositional environments from around the world. Analysis of 10 large scroll bars (median area = 25 km2) on the Mississippi shows that the point bar deposits can be categorised into three different geomorphological units of increasing scale: individual19 ‘scrolls’, ‘depositional packages’, and ‘point bar complexes’. Scroll heights and curvatures are greatest near the modern channel and at the terminating boundaries of different depositional packages, confirming the importance of the formative main channel on subsequent scroll bar relief and shape Fourier analysis shows a periodic variation in signal (scroll bar height) with an average period (spacing) of 167 m (range 150-190 m) for the Mississippi point bars. For other rivers, a strong relationship exists between the period of scroll bars and the adjacent primary channel width for a range of rivers from 55 to 2042 m wide. On average, scroll spacing is ̴50% of the main channel width. The strength of this correlation over nearly two orders of magnitude of channel size indicates a scale independence of scroll bar spacing and suggests a strong link between channel migration and scroll bar construction with apparent regularities despite different flow regimes. This investigation of meandering river dynamics and floodplain patterns shows that it is possible to develop a suite of metrics that describe scroll bar morphology and geometry that can be valuable to geoscientists predicting the heterogeneity of subsurface meandering deposits

    Statistical mechanics of triangulated ribbons

    Full text link
    We use computer simulations and scaling arguments to investigate statistical and structural properties of a semiflexible ribbon composed of isosceles triangles. We study two different models, one where the bending energy is calculated from the angles between the normal vectors of adjacent triangles, the second where the edges are viewed as semiflexible polymers so that the bending energy is related to the angles between the tangent vectors of next-nearest neighbor triangles. The first model can be solved exactly whereas the second is more involved. It was recently introduced by Liverpool and Golestanian Phys.Rev.Lett. 80, 405 (1998), Phys.Rev.E 62, 5488 (2000) as a model for double-stranded biopolymers such as DNA. Comparing observables such as the autocorrelation functions of the tangent vectors and the bond-director field, the probability distribution functions of the end-to-end distance, and the mean squared twist we confirm the existence of local twist correlation, but find no indications for other predicted features such as twist-stretch coupling, kinks, or oscillations in the autocorrelation function of the bond-director field.Comment: 10 pages, 13 figures. submitted to PRE, revised versio

    Getting DNA twist rigidity from single molecule experiments

    Get PDF
    We use an elastic rod model with contact to study the extension versus rotation diagrams of single supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted DNA and, using experimental data, we get an estimation of the effective supercoiling radius and of the twist rigidity of B-DNA. We find that unlike the bending rigidity, the twist rigidity of DNA seems to vary widely with the nature and concentration of the salt buffer in which it is immerged

    Pulling self-interacting polymers in two-dimensions

    Full text link
    We investigate a two-dimensional problem of an isolated self-interacting end-grafted polymer, pulled by one end. In the thermodynamic limit, we find that the model has only two different phases, namely a collapsed phase and a stretched phase. We show that the phase diagram obtained by Kumar {\it at al.\} [Phys. Rev. Lett. {\bf 98}, 128101 (2007)] for small systems, where differences between various statistical ensembles play an important role, differ from the phase diagram obtained here in the thermodynamic limit.Comment: 20 pages, 22 figure

    Inferring the effective thickness of polyelectrolytes from stretching measurements at various ionic strengths: applications to DNA and RNA

    Full text link
    By resorting to the thick-chain model we discuss how the stretching response of a polymer is influenced by the self-avoidance entailed by its finite thickness. The characterization of the force versus extension curve for a thick chain is carried out through extensive stochastic simulations. The computational results are captured by an analytic expression that is used to fit experimental stretching measurements carried out on DNA and single-stranded RNA (poly-U) in various solutions. This strategy allows us to infer the apparent diameter of two biologically-relevant polyelectrolytes, namely DNA and poly-U, for different ionic strengths. Due to the very different degree of flexibility of the two molecules, the results provide insight into how the apparent diameter is influenced by the interplay between the (solution-dependent) Debye screening length and the polymers' ``bare'' thickness. For DNA, the electrostatic contribution to the effective radius, Δ\Delta, is found to be about 5 times larger than the Debye screening length, consistently with previous theoretical predictions for highly-charged stiff rods. For the more flexible poly-U chains the electrostatic contribution to Δ\Delta is found to be significantly smaller than the Debye screening length.Comment: iopart, 14 pages, 13 figures, to appear in J. Phys.: Condens. Matte

    Stretched Polymers in a Poor Solvent

    Full text link
    Stretched polymers with attractive interaction are studied in two and three dimensions. They are described by biased self-avoiding random walks with nearest neighbour attraction. The bias corresponds to opposite forces applied to the first and last monomers. We show that both in d=2d=2 and d=3d=3 a phase transition occurs as this force is increased beyond a critical value, where the polymer changes from a collapsed globule to a stretched configuration. This transition is second order in d=2d=2 and first order in d=3d=3. For d=2d=2 we predict the transition point quantitatively from properties of the unstretched polymer. This is not possible in d=3d=3, but even there we can estimate the transition point precisely, and we can study the scaling at temperatures slightly below the collapse temperature of the unstretched polymer. We find very large finite size corrections which would make very difficult the estimate of the transition point from straightforward simulations.Comment: 10 pages, 16 figure
    • …
    corecore