177 research outputs found

    Modelling the Kinked Jet of the Crab Nebula

    Get PDF
    We investigate the dynamical propagation of the South-East jet from the Crab pulsar interacting with supernova ejecta by means of three-dimensional relativistic MHD numerical simulations with the PLUTO code. The initial jet structure is set up from the inner regions of the Crab Nebula. We study the evolution of hot, relativistic hollow outflows initially carrying a purely azimuthal magnetic field. Our jet models are characterized by different choices of the outflow magnetization (σ\sigma parameter) and the bulk Lorentz factor (γj\gamma_{j}). We show that the jet is heavily affected by the growth of current-driven kink instabilities causing considerable deflection throughout its propagation length. This behavior is partially stabilized by the combined action of larger flow velocities and/or reduced magnetic field strengths. We find that our best jet models are characterized by relatively large values of σ\sigma (≳1\gtrsim 1) and small values of γj≃2\gamma_{j}\simeq 2. Our results are in good agreement with the recent X-ray (\textit{Chandra}) data of the Crab Nebula South-East jet indicating that the jet changes direction of propagation on a time scale of the order of few years. The 3D models presented here may have important implications in the investigation of particle acceleration in relativistic outflows.Comment: 15 pages, 20 figure

    The Surprising Crab Nebula

    Full text link
    We will present our study of the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call "waves". Statistically significant "waves" show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. The Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE shows both "wave" and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional "wave" episodes can be identified. We discuss the spectral properties of the September 2007 "wave"/flare event and show that the physical properties of the "waves" are intermediate between steady and flaring states. Plasma instabilities inducing "waves" appear to involve spatial distances l∼1016  l \sim 10^{16} \,cm and enhanced magnetic fields B∼(0.5−1) B \sim (0.5 - 1)\,}mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the "wave" phenomenon (Ew∼1042 ergE_w \sim 10^{42} \, \rm erg, where EwE_w is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.Comment: 2012 Fermi Symposium proceedings - eConf C12102

    Improving Matrix-vector Multiplication via Lossless Grammar-Compressed Matrices

    Get PDF
    As nowadays Machine Learning (ML) techniques are generating huge data collections, the problem of how to efficiently engineer their storage and operations is becoming of paramount importance. In this article we propose a new lossless compression scheme for real-valued matrices which achieves efficient performance in terms of compression ratio and time for linear-algebra operations. Ex- periments show that, as a compressor, our tool is clearly superior to gzip and it is usually within 20% of xz in terms of compression ratio. In addition, our compressed format supports matrix-vector multiplications in time and space proportional to the size of the compressed representation, unlike gzip and xz that require the full decompression of the compressed matrix. To our knowledge our lossless compressor is the first one achieving time and space com- plexities which match the theoretical limit expressed by the k-th order statistical entropy of the input. To achieve further time/space reductions, we propose column- reordering algorithms hinging on a novel column-similarity score. Our experiments on various data sets of ML matrices show that our column reordering can yield a further reduction of up to 16% in the peak memory usage during matrix-vector multiplication. Finally, we compare our proposal against the state-of-the-art Compressed Linear Algebra (CLA) approach showing that ours runs always at least twice faster (in a multi-thread setting), and achieves better compressed space occupancy and peak memory usage. This experimentally confirms the provably effective theoretical bounds we show for our compressed-matrix approach

    Optimizing Flame Retardancy and Durability in Melamine-Formaldehyde/Solid-Urban-Waste Composite Panels

    Get PDF
    In our previous study, an innovative method for sterilization, inertization, and valorization of the organic fraction of municipal solid waste (OFMSW), to be recycled in the production of composite panels, was developed. In this follow-up work, the effects of fire retardants on fire performance, durability, and the mechanical properties of the composite panels based on OFMSW and melamine-formaldehyde resin were investigated. The performance of panels without fire retardants (control panels) was compared to panels containing either mono-ammonium phosphate (PFR) or aluminium trihydrate (ATH) at a mass fraction of 1% and 10% (modified panels). As shown by cone calorimetry, the total heat released was already low (about 31 MJ/m2 at 50 kW/m2) in the control panels, further decreased in the modified panels with the addition of fire retardants, and reached the lowest value (about 1.4 MJ/m2) with 10% mass fraction of PFR. Hence, the addition of fire retardants had a beneficial effect on the response to fire of the panels; however, it also reduced the mechanical properties of the panels as measured by flexural tests. The deterioration of the mechanical properties was particularly obvious in panels containing 10% mass fraction of fire retardants, and they were further degraded by artificial accelerated weathering, carried out by boiling tests. Ultimately, the panels containing PFR at a mass fraction of 1% offered the best balance of fire resistance, durability, and mechanical performance within the formulations investigated in this study

    Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states

    Full text link
    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 carried out for which includes a remarkably prolonged `soft state' phase (June 2010 -- May 2011). Previous 1--10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F_soft < 20 x 10^{-8} ph/cm^2/s, excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in October 2009 during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of June 2010 (2010-06-30 10:00 - 2010-07-02 10:00 UT) exactly in coincidence with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.Comment: 16 pages, 12 figures, 1 table, accepted for publication in Ap

    The extraordinary gamma-ray flare of the blazar 3C 454.3

    Full text link
    We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{\gamma,p} = (2000 \pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F \simeq (1000 \pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{\gamma, source, peak} \simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {\delta} \simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{\gamma,iso} \simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.Comment: 17 pages, 3 figures, ApJ accepte
    • …
    corecore