23 research outputs found

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)

    Correction: genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

    Get PDF
    [This corrects the article on p. e13950 in vol. 5.]. Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings: We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance: Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer's disease risk

    Get PDF
    We assessed the role of rare copy number variants (CNVs) in Alzheimer's disease (AD) using intensity data from 3260 AD cases and 1290 age-matched controls from the genome-wide association study (GWAS) conducted by the Genetic and Environmental Risk for Alzheimer's disease Consortium (GERAD). We did not observe a significant excess of rare CNVs in cases, although we did identify duplications overlapping APP and CR1 which may be pathogenic. We looked for an excess of CNVs in loci which have been highlighted in previous AD CNV studies, but did not replicate previous findings. Through pathway analyses, we observed suggestive evidence for biological overlap between single nucleotide polymorphisms and CNVs in AD susceptibility. We also identified that our sample of elderly controls harbours significantly fewer deletions >1 Mb than younger control sets in previous CNV studies on schizophrenia and bipolar disorder (P = 8.9 × 10-4 and 0.024, respectively), raising the possibility that healthy elderly individuals have a reduced rate of large deletions. Thus, in contrast to diseases such as schizophrenia, autism and attention deficit/hyperactivity disorder, CNVs do not appear to make a significant contribution to the development of AD

    A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer&apos;s disease risk

    No full text
    We assessed the role of rare copy number variants (CNVs) in Alzheimer&apos;s disease (AD) using intensity data from 3260 AD cases and 1290 age-matched controls from the genome-wide association study (GWAS) conducted by the Genetic and Environmental Risk for Alzheimer&apos;s disease Consortium (GERAD). We did not observe a significant excess of rare CNVs in cases, although we did identify duplications overlapping APP and CR1 which may be pathogenic. We looked for an excess of CNVs in loci which have been highlighted in previous AD CNV studies, but did not replicate previous findings. Through pathway analyses, we observed suggestive evidence for biological overlap between single nucleotide polymorphisms and CNVs in AD susceptibility. We also identified that our sample of elderly controls harbours significantly fewer deletions &gt;1 Mb than younger control sets in previous CNV studies on schizophrenia and bipolar disorder (P 5 8.9 3 10 24 and 0.024, respectively), raising the possibility that healthy elderly individuals have a reduced rate of large deletions. Thus, in contrast to diseases such as schizophrenia, autism and attention deficit/hyperactivity disorder, CNVs do not appear to make a significant contribution to the development of AD

    A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer&apos;s disease risk

    No full text
    We assessed the role of rare copy number variants (CNVs) in Alzheimer&apos;s disease (AD) using intensity data from 3260 AD cases and 1290 age-matched controls from the genome-wide association study (GWAS) conducted by the Genetic and Environmental Risk for Alzheimer&apos;s disease Consortium (GERAD). We did not observe a significant excess of rare CNVs in cases, although we did identify duplications overlapping APP and CR1 which may be pathogenic. We looked for an excess of CNVs in loci which have been highlighted in previous AD CNV studies, but did not replicate previous findings. Through pathway analyses, we observed suggestive evidence for biological overlap between single nucleotide polymorphisms and CNVs in AD susceptibility. We also identified that our sample of elderly controls harbours significantly fewer deletions &gt;1 Mb than younger control sets in previous CNV studies on schizophrenia and bipolar disorder (P 5 8.9 3 10 24 and 0.024, respectively), raising the possibility that healthy elderly individuals have a reduced rate of large deletions. Thus, in contrast to diseases such as schizophrenia, autism and attention deficit/hyperactivity disorder, CNVs do not appear to make a significant contribution to the development of AD
    corecore