96 research outputs found

    Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species

    Full text link
    We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-ionization of He, the distribution of one electron is chiral, if the other electron is oriented like the molecular axis in the former case and if the electrons are distinguishable by their energy. In both scenarios, the circularly polarized photon defines a plane with a sense of rotation and an additional axis is defined by the CO molecule or one electron. This is sufficient to establish an unambiguous coordinate frame of well-defined handedness. To produce a chirally structured electron angular distribution, such a coordinate frame is necessary, but not sufficient. We show that additional electron-electron interaction or scattering processes are needed to create the chiral angular distribution

    Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height.

    Get PDF
    The biological processes controlling human growth are diverse, complex and poorly understood. Genetic factors are important and human height has been shown to be a highly polygenic trait to which common and rare genetic variation contributes. Weaver syndrome is a human overgrowth condition characterised by tall stature, dysmorphic facial features, learning disability and variable additional features. We performed exome sequencing in four individuals with Weaver syndrome, identifying a mutation in the histone methyltransferase, EZH2, in each case. Sequencing of EZH2 in additional individuals with overgrowth identified a further 15 mutations. The EZH2 mutation spectrum in Weaver syndrome shows considerable overlap with the inactivating somatic EZH2 mutations recently reported in myeloid malignancies. Our data establish EZH2 mutations as the cause of Weaver syndrome and provide further links between histone modifications and regulation of human growth

    Observation of Photoion Backward Emission in Photoionization of He and N2

    Full text link
    We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV  Eγ \leq~E_\gamma~\leq 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by 3/5-3/5 times the photon momentum. These results experimentally confirm a 90 year old prediction.Comment: 5 pages, 3 figure

    Revealing the Two-Electron Cusp in the Ground States of He and H2 via Quasifree Double Photoionization

    Full text link
    We report on kinematically complete measurements and ab initio non-perturbative calculations of double ionization of He and H2 by a single 800 eV circularly polarized photon. We confirm the quasifree mechanism of photoionization for H2 and show how it originates from the two-electron cusp in the ground state of a two-electron target. Our approach establishes a new method for mapping electrons relative to each other and provides valuable insight into photoionization beyond the electric-dipole approximation.Comment: 7 pages, 4 figure

    Coulomb explosion imaging of small polyatomic molecules with ultrashort x-ray pulses

    Get PDF
    Ultrashort x-ray pulses from free-electron lasers can efficiently charge up and trigger the full fragmentation of molecules. By coincident detection of up to five ions resulting from rapid Coulomb explosion of highly charged iodomethane, we show that the full three-dimensional equilibrium geometry of this prototypical polyatomic system can be determined from the measured ion momenta with the help of a charge buildup model. Supported by simulations of how the ion momenta would reflect specific changes in molecular bond lengths and angles, we demonstrate that Coulomb-explosion imaging with ultrashort x-ray pulses is a promising technique for recording movies of multidimensional nuclear wave packets, including hydrogen motions

    Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses

    Get PDF
    During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light–matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses

    X-ray multiphoton-induced Coulomb explosion images complex single molecules

    Get PDF
    Following structural dynamics in real time is a fundamental goal towards a better understanding of chemical reactions. Recording snapshots of individual molecules with ultrashort exposure times is a key ingredient towards this goal, as atoms move on femtosecond (10-15 s) timescales. For condensed-phase samples, ultrafast, atomically resolved structure determination has been demonstrated using X-ray and electron diffraction. Pioneering experiments have also started addressing gaseous samples. However, they face the problem of low target densities, low scattering cross sections and random spatial orientation of the molecules. Therefore, obtaining images of entire, isolated molecules capturing all constituents, including hydrogen atoms, remains challenging. Here we demonstrate that intense femtosecond pulses from an X-ray free-electron laser trigger rapid and complete Coulomb explosions of 2-iodopyridine and 2-iodopyrazine molecules. We obtain intriguingly clear momentum images depicting ten or eleven atoms, including all the hydrogens, and thus overcome a so-far impregnable barrier for complete Coulomb explosion imaging—its limitation on molecules consisting of three to five atoms. In combination with state-of-the-art multi-coincidence techniques and elaborate theoretical modelling, this allows tracing ultrafast hydrogen emission and obtaining information on the result of intramolecular electron rearrangement. Our work represents an important step towards imaging femtosecond chemistry via Coulomb explosion
    corecore