54 research outputs found

    In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure x-ray photoelectron spectroscopy

    Get PDF
    In this contribution, we report the development of in situ electrochemical cells based on proton exchange membranes suitable for studying interfacial structural dynamics of energy materials under operation by near ambient pressure X-ray photoelectron spectroscopy. We will present both the first design of a batch-type two-electrode cell prototype and the improvements attained with a continuous flow three-electrode cell. Examples of both sputtered metal films and carbon-supported metal nanostructures are included demonstrating the high flexibility of the cells to study energy materials. Our immediate focus was on the study of the oxygen evolution reaction, however, the methods described herein can be broadly applied to reactions relevant in energy conversion and storage devices

    Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping

    Get PDF
    While Ta3N5 shows excellent potential as a semiconductor photoanode for solar water splitting, its performance is hindered by poor charge carrier transport and trapping due to native defects that introduce electronic states deep within its bandgap. Here, it is demonstrated that controlled Ti doping of Ta3N5 can dramatically reduce the concentration of deep-level defects and enhance its photoelectrochemical performance, yielding a sevenfold increase in photocurrent density and a 300 mV cathodic shift in photocurrent onset potential compared to undoped material. Comprehensive characterization reveals that Ti4+ ions substitute Ta5+ lattice sites, thereby introducing compensating acceptor states, reducing the concentrations of deleterious nitrogen vacancies and reducing Ta3+ states, and thereby suppressing trapping and recombination. Owing to the similar ionic radii of Ti4+ and Ta5+, substitutional doping does not introduce lattice strain or significantly affect the underlying electronic structure of the host semiconductor. Furthermore, Ti can be incorporated without increasing the oxygen donor content, thereby enabling the electrical conductivity to be tuned by over seven orders of magnitude. Thus, Ti doping of Ta3N5 provides a powerful basis for precisely engineering its optoelectronic characteristics and to substantially improve its functional characteristics as an advanced photoelectrode for solar fuels applications

    Correction to: The Role of Adsorbed and Subsurface Carbon Species for the Selective Alkyne Hydrogenation Over a Pd-Black Catalyst: An Operando Study of Bulk and Surface

    Get PDF
    The selective hydrogenation of propyne over a Pd-black model catalyst was investigated under operando conditions at 1 bar making use of advanced X-ray diffraction (bulk sensitive) and photo-electron spectroscopy (surface sensitive) techniques. It was found that the population of subsurface species controls the selective catalytic semi-hydrogenation of propyne to pro-pylene due to the formation of surface and near-surface PdCx that inhibits the participation of more reactive bulk hydrogen in the hydrogenation reaction. However, increasing the partial pressure of hydrogen reduces the population of PdCx with the concomitant formation of a β-PdHx phase up to the surface, which is accompanied by a lattice expansion, allowing the participation of more active bulk hydrogen which is responsible for the unselective total alkyne hydrogenation. Therefore, controlling the surface and subsurface catalyst chemistry is crucial to control the selective alkyne semi-hydrogenation

    Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke

    Get PDF
    Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJZahl^{Zahl}) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects

    An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap

    Get PDF
    A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished

    Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Get PDF
    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed

    Merging operando and computational X ray spectroscopies to study the oxygen evolution reaction

    No full text
    The combination of operando and computational X ray spectroscopies has shown promise for building accurate models of active catalyst surfaces. Operando spectroscopy captures metastable active surfaces and computational spectroscopy uses this information to aid in building models for first principles reaction simulations. Herein, we review recent efforts and outline future opportunities to study the oxygen evolution reaction OER by combining operando spectroscopies and first principles modeling. We begin by showcasing how explicit simulation of operando collected spectra has helped validate an OER mechanism over Ir based catalysts involving electron deficient oxygen, or OI amp; 8722;. We continue by reviewing efforts on 3d transition metal TM oxyhydroxides, where operando studies again suggest OI amp; 8722; is critical. While for these materials, changes in OI amp; 8722; coverage have been argued to cause qualitative mechanistic differences, comparative operando and computational spectroscopic studies are still lacking. We close by outlining how such comparative studies would aid in testing mechanistic claims on 3d TM oxyhydroxide

    Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction

    No full text
    The combination of operando and computational X-ray spectroscopies has shown promise for building accurate models of active catalyst surfaces. Operando spectroscopy captures metastable active surfaces and computational spectroscopy uses this information to aid in building models for first principles reaction simulations. Herein, we review recent efforts and outline future opportunities to study the oxygen evolution reaction (OER) by combining operando spectroscopies and first principles modeling. We begin by showcasing how explicit simulation of operando-collected spectra has helped validate an OER mechanism over Ir-based catalysts involving electron-deficient oxygen, or OI−. We continue by reviewing efforts on 3d transition metal (TM) oxyhydroxides, where operando studies again suggest OI− is critical. While for these materials, changes in OI− coverage have been argued to cause qualitative mechanistic differences, comparative operando and computational spectroscopic studies are still lacking. We close by outlining how such comparative studies would aid in testing mechanistic claims on 3d TM oxyhydroxides
    • …
    corecore