22 research outputs found

    Useful immunohistochemical indicators in canine mast cell tumours

    Get PDF
    Morphological and immunohistochemical analysis of 45 canine mast cell tumours was performed to determine whether the proteins examined are useful for a more precise description of tumour morphology and a more reliable determination of the prognosis in patients. Tissue sections were stained according to the standard haematoxylin and eosin (HE) technique and with toluidine blue to demonstrate cytoplasmic granules. Immunohistochemical studies were performed, using the cell markers CD117 (c-kit), p16 and von Willebrand factor (FVIII). In CD117 three different staining patterns were observed: (1) membranous reaction, (2) intense staining of cytoplasm, and (3) a diffuse, delicate cytoplasmic reaction. Von Willebrand antibody was evaluated on the basis of the number of blood vessels stained. p16 expression was evaluated by scoring positive nuclear reaction. Positive expression was demonstrated for all examined antigens, but their level of expression differed depending on the grades of tumour malignancy. Statistical analysis of the results documented a pronounced positive correlation between the markers studied and the grade of tumour malignancy (P < 0.001). It was shown that each of the cell markers examined represents a useful prognostic indicator for patients with mast cell tumours. The calculated correlation coefficients demonstrate a strong association between the expressions of CD117, FVIII and p16, and the histological malignancy of a tumour

    Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle

    Get PDF
    Abstract\ud \ud Background\ud The selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype.\ud \ud \ud Results\ud Eight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-expression analyses identified 34 gene modules of which 4 were strongly associated with FE traits. They were mainly enriched for inflammatory response or inflammation-related terms. We also identified 463 differentially co-expressed genes which were functionally enriched for immune response and lipid metabolism. A total of 8 key regulators of gene expression profiles affecting FE were found. The LFE animals had higher feed intake and increased subcutaneous and visceral fat deposition. In addition, LFE animals showed higher levels of serum cholesterol and liver injury biomarker GGT. Histopathology of the liver showed higher percentage of periportal inflammation with mononuclear infiltrate.\ud \ud \ud Conclusion\ud Liver transcriptomic network analysis coupled with other results demonstrated that LFE animals present altered lipid metabolism and increased hepatic periportal lesions associated with an inflammatory response composed mainly by mononuclear cells. We are now focusing to identify the causes of increased liver lesions in LFE animals.The authors thank Fundação de Apoio a Pesquisa do Estado de São Paulo\ud (FAPESP) for financial support (process. numbers: 2014/02493-7; 2014/07566-\ud 2) and scholarship for PA Alexandre (2012/14792-3; 2014/00307-1). HN\ud Kadarmideen thanks EU-FP7 Marie Curie Actions – Career Integration Grant\ud (CIG-293511) for partially funding his time spent on this research. The authors\ud thank Dr. JF Medrano for the technical advice on RNAseq and experimental\ud design

    The Value of Immunohistochemical Expression of BAX in Formulating a Prognosis for Canine Cutaneous Mast Cell Tumours

    No full text
    Irnmunohistochcmical expression of BAX was evaluated in 24 canine cutaneous mast cell tumours in order to verify the relationship of this expression to the histopathological grade of the lesions and its prognostic value for clinical outcome. BAX expression increased with higher histopathological grades (P = 0.0148; P &lt; 0.05 between grades I and III). Animals with high levels of BAX expression were 4.25 times more likely to die from the disease and had shorter post-surgical survival times (P = 0.0009). These results suggest that alterations in BAX expression may be related to the aggressiveness of canine cutaneous mast cell tumours, indicating that immunohistochemical detection of BAX may be predictive of clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [05/50407-3, 97/09459-7, 96/4903-8

    Constitutive Androstane Receptor Ligands Modulate the Anti-Tumor Efficacy of Paclitaxel in Non-Small Cell Lung Cancer Cells

    Get PDF
    <div><p>Background</p><p>Lung tumors are the leading cause of cancer deaths worldwide and paclitaxel has proven to be useful for patients with lung cancer, however, acquired resistance is a major problem. To overcome this problem, one promising option is the use of Constitutive Androstane Receptor (CAR) ligands in combination with chemotherapeutics against cancer cells. Therefore, we wish to elucidate the effects of CAR ligands on the antineoplastic efficacy of paclitaxel in lung cancer cells.</p><p>Methodology/Principal Findings</p><p>Our results from cell viability assays exposing CAR agonist or inverse-agonist to mouse and human lung cancer cells modulated the antineoplastic effect of paclitaxel. The CAR agonists increased the effect of Paclitaxel in 6 of 7 lung cancer cell lines, whereas the inverse-agonist had no effect on paclitaxel cytotoxicity. Interestingly, the mCAR agonist TCPOBOP enhanced the expression of two tumor suppressor genes, namely WT1 and MGMT, which were additively enhanced in cells treated with CAR agonist in combination with paclitaxel. Also, <i>in silico</i> analysis showed that both paclitaxel and CAR agonist TCPOBOP docked into the mCAR structure but not the inverse agonist androstenol. Paclitaxel per se increases the expression of CAR in cancer cells. At last, we analyzed the expression of CAR in two public independent studies from The Cancer Genome Atlas (TCGA) of Non Small Cell Lung Cancer (NSCLC). CAR is expressed in variable levels in NSCLC samples and no association with overall survival was noted.</p><p>Conclusions/Significance</p><p>Taken together, our results demonstrated that CAR agonists modulate the antineoplastic efficacy of paclitaxel in mouse and human cancer cell lines. This effect was probably related by the enhanced expression of two tumor suppressor genes, viz. WT1 and MGMT. Most of NSCLC cases present CAR gene expression turning it possible to speculate the use of CAR modulation by ligands along with Paclitaxel in NSCLC therapy.</p></div
    corecore