32 research outputs found

    Habitat requirements of Tetanocera elata (Diptera: Sciomyzidae): case study of a dry meadow in western Ireland

    Get PDF
    Terrestrial slugs are pervasive pests of agriculture throughout temperate regions and have the potential to disrupt the germination of seedlings, cause damage to fruiting bodies of crops, and vector plant pathogens. Tetanocera elata Fabricius (Diptera: Sciomyzidae), a widely distributed Palaearctic species, is an obligate mesoparasitoid and predator of pestiferous slugs including Deroceras reticulatum Müller (Stylommatophora: Agriolimacidae). It has the potential to be developed as a native natural enemy in a conservation biological control programme as an alternative to chemical molluscicides. To better understand the ecological requirements of this species, a detailed observational study was conducted at a site in the west of Ireland possessing naturally occurring T. elata populations. Comparison of local patches where T. elata were recovered revealed no association with plant community composition. Taller dead vegetation was associated with T. elata presence throughout the site. Within the area of greatest T. elata aggregation, there was a significantly greater percentage cover of dead vegetation where T. elata occurred. Abundance of T. elata was also significantly correlated to hedgerow proximity. Results of this study are directly applicable for the design of a conservation biological control programme, which effectively satisfies the principal habitat requirements of T. elata populations

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Dynamic Pumping Characteristics of the Hemopump®

    No full text
    While pumping blood with the Hemopump® in sheep, the ability of predicting the instantaneous pump flow from the pressure difference over the pump system and pump parameters was investigated. For rotational speed n between 300 and 475 revolutions per second (rps), maximum pump flow QO(n) at zero pressure difference, internal pump resistance R(n), and inertia parameter Lc were found to be suitable parameters for Hemopump® characterization. The instantaneous pump flow could be estimated with an accuracy of approximately 1.0 [ml/s]. The values of the pump source parameters (± sd) were: (the figures in parentheses represent earlier reported values found while pumping water) Lc was a constant of 21.4 ± 6.4 [Pa·s2/ml] (in water: 10.8). QO(n) is linearly related to rotational speed n according to: QO(n) = Qo(ncen) + CQ(n - ncen), with QO(ncen) = 49.4 ± 4.5 [ml/s] (in water: 60.3), CQ = 142 ± 22.4 [10−3 ml] (in water: 146), and ncen = 387.5 [rps]. R(n) is linearly related to rotational speed n according to: R(n) = R(ncen) + CR(n - ncen), with R(ncen) = 556 ± 124 [Pa·s/ml] (in water: 502) and CR = 1.47 ± 0.83 [Pa·s2/ml] (in water: 1.67)
    corecore