1,177 research outputs found
Atom-molecule theory of broad Feshbach resonances
We derive the atom-molecule theory for an atomic gas near a broad Feshbach
resonance, where the energy dependence of the atom-molecule coupling becomes
crucial for understanding experimental results. We show how our many-body
theory incorporates the two-atom physics exactly. In particular, we calculate
the magnetic moment of a two-component gas of ^{6}Li atoms for a wide range of
magnetic fields near the broad Feshbach resonance at about 834 Gauss. We find
excellent agreement with the experiment of Jochim et al. [Phys. Rev. Lett. 91,
240402 (2003)].Comment: 4 pages, 2 figure
Bright soliton trains of trapped Bose-Einstein condensates
We variationally determine the dynamics of bright soliton trains composed of
harmonically trapped Bose-Einstein condensates with attractive interatomic
interactions. In particular, we obtain the interaction potential between two
solitons. We also discuss the formation of soliton trains due to the quantum
mechanical phase fluctuations of a one-dimensional condensate.Comment: 4 pages, 2 figures, submitted to PR
Neutron-induced background in the CONUS experiment
CONUS is a novel experiment aiming at detecting elastic neutrino nucleus
scattering in the fully coherent regime using high-purity Germanium (Ge)
detectors and a reactor as antineutrino () source. The detector setup
is installed at the commercial nuclear power plant in Brokdorf, Germany, at a
very small distance to the reactor core in order to guarantee a high flux of
more than 10/(scm). For the experiment, a good
understanding of neutron-induced background events is required, as the neutron
recoil signals can mimic the predicted neutrino interactions. Especially
neutron-induced events correlated with the thermal power generation are
troublesome for CONUS. On-site measurements revealed the presence of a thermal
power correlated, highly thermalized neutron field with a fluence rate of
(74530)cmd. These neutrons that are produced by nuclear
fission inside the reactor core, are reduced by a factor of 10 on
their way to the CONUS shield. With a high-purity Ge detector without shield
the -ray background was examined including highly thermal power
correlated N decay products as well as -lines from neutron
capture. Using the measured neutron spectrum as input, it was shown, with the
help of Monte Carlo simulations, that the thermal power correlated field is
successfully mitigated by the installed CONUS shield. The reactor-induced
background contribution in the region of interest is exceeded by the expected
signal by at least one order of magnitude assuming a realistic ionization
quenching factor of 0.2.Comment: 28 pages, 28 figure
Definitive chemical evidence for the constitutive ability of Candida albicans serotype A strains to synthesize β-1,2 linked oligomannosides containing up to 14 mannose residues
AbstractWe have previously reported the presence of phosphate bound β-1,2 linked oligomannosides with unusually high degrees of polymerization (DP>7) in the mannan of Candida albicans strain VW32. To confirm this observation, we have prepared these oligomannosides from the mannan of C. albicans strain NIH A 207. Gel filtration chromatography and TLC analysis revealed DP up to 14. For both strains, NMR analysis confirmed the exclusive presence of β-1,2 linkages in the pools of oligomannosides with a DP higher than 6 which presented an average DP of 10.6 (VW32) and 10.4 (NIH A 207). These results are important to consider in relation with the ability of these C. albicans derived oligomannosides to trigger TNFα synthesis according to their DP
Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas
We have converted an ultracold Fermi gas of Li atoms into an ultracold
gas of Li molecules by adiabatic passage through a Feshbach resonance.
Approximately molecules in the least-bound, ,
vibrational level of the X singlet state are produced with an
efficiency of 50%. The molecules remain confined in an optical trap for times
of up to 1 s before we dissociate them by a reverse adiabatic sweep.Comment: Accepted for publication in Phys. Rev. Letter
Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InGaAs
We have investigated InGaAs layers grown by molecular-beam epitaxy on
GaAs(001) by transmission electron microscopy (TEM) and photoluminescence
spectroscopy. InGaAs layers with In-concentrations of 16, 25 and 28 % and
respective thicknesses of 20, 22 and 23 monolayers were deposited at 535 C. The
parameters were chosen to grow layers slightly above and below the transition
between the two- and three-dimensional growth mode. In-concentration profiles
were obtained from high-resolution TEM images by composition evaluation by
lattice fringe analysis. The measured profiles can be well described applying
the segregation model of Muraki et al. [Appl. Phys. Lett. 61 (1992) 557].
Calculated photoluminescence peak positions on the basis of the measured
concentration profiles are in good agreement with the experimental ones.
Evaluating experimental In-concentration profiles it is found that the
transition from the two-dimensional to the three-dimensional growth mode occurs
if the indium content in the In-floating layer exceeds 1.1+/-0.2 monolayers.
The measured exponential decrease of the In-concentration within the cap layer
on top of the islands reveals that the In-floating layer is not consumed during
island formation. The segregation efficiency above the islands is increased
compared to the quantum wells which is explained tentatively by
strain-dependent lattice-site selection of In. In addition, In0.25Ga0.75As
quantum wells were grown at different temperatures between 500 oC and 550 oC.
The evaluation of concentration profiles shows that the segregation efficiency
increases from R=0.65 to R=0.83.Comment: 16 pages, 6 figures, 1 table, sbmitted in Phys. Rev.
Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)
A conceptual design for an infrared spectrometer capable of both low resolution (λ/Δ-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120μm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources
1D Bose Gases in an Optical Lattice
We report on the study of the momentum distribution of a one-dimensional Bose
gas in an optical lattice. From the momentum distribution we extract the
condensed fraction of the gas and thereby measure the depletion of the
condensate and compare it with a theorical estimate. We have measured the
coherence length of the gas for systems with average occupation and
per lattice site.Comment: 4 pages, 3 figure
Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film
thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT)
substrates. After initial pseudomorphic growth the films start to relieve their
strain partly by the formation of periodic nano-twins with twin planes
predominantly along the direction. Nano-twinning occurs already at the
initial stage of growth, albeit in a more moderate way. Pseudomorphic grains,
on the other hand, still grow up to a thickness of at least several tenths of
nanometers. The twinning is attributed to the symmetry lowering of the
epitaxially strained pseudo-tetragonal structure towards the relaxed
rhombohedral structure of bulk LCO. However, the unit-cell volume of the
pseudo-tetragonal structure is found to be nearly constant over a very large
range of t. Only films with t > 130 nm show a significant relaxation of the
lattice parameters towards values comparable to those of bulk LCO.Comment: 31 pages, 10 figure
- …