450 research outputs found
CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius
We study the components of cool and warm/hot gas in the circumgalactic medium
(CGM) of simulated galaxies and address the relative production of OVI by
photoionization versus collisional ionization, as a function of halo mass,
redshift, and distance from the galaxy halo center. This is done utilizing two
different suites of zoom-in hydro-cosmological simulations, VELA (6 halos;
) and NIHAO (18 halos; to ), which provide a broad theoretical basis
because they use different codes and physical recipes for star formation and
feedback. In all halos studied in this work, we find that collisional
ionization by thermal electrons dominates at high redshift, while
photoionization of cool or warm gas by the metagalactic radiation takes over
near . In halos of and above, collisions become
important again at , while photoionization remains significant down to
for less massive halos. In halos with , at most of the photoionized OVI is in a
warm, not cool, gas phase (~K). We also find that
collisions are dominant in the central regions of halos, while photoionization
is more significant at the outskirts, around , even in massive
halos. This too may be explained by the presence of warm gas or, in lower mass
halos, by cool gas inflows
Poorly Crystalline, Iron-Bearing Aluminosilicates and Their Importance on Mars
Martian rocks and sediments contain weathering products including evaporite salts and clay minerals that only form as a result of interaction between rocks and water [1-6]. These weathering products are key to studying the history of water on Mars because their type, abundance and location provide clues to past conditions on the surface of the planet, as well as to the possible location of present-day reservoirs of water. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals [7-10] including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which affects their spectral and physical properties. Detection and quantification of such minerals in natural environments on earth is difficult due to their variable chemical composition and lack of long-range crystalline order [9, 11, 12]. Despite the difficulty in characterizing these materials, they are common on Earth, and data from orbital remote sensing and rover-based instruments suggest that they are also present on Mars [9, 10, 13-17]. Their accurate detection and quantification require a better understanding of how composition affects their spectral properties. We present here the results of XAFS spectroscopy; these results will be corroborated with planned Mossbauer and reflectance spectroscopy
Cavitation Bubbles Remove and Inactivate Listeria and Salmonella on the Surface of Fresh Roma Tomatoes and Cantaloupes
Raw produce has frequently been identified as the source of bacterial pathogens that can cause human illnesses, including listeriosis and salmonellosis. Microbial pathogens may attach and form biofilms on raw fruit surfaces and can be difficult to remove. A cavitation process (injection of bubbles into water) was studied for its effectiveness for removal and inactivation of Listeria monocytogenes and Salmonella Newport from the surfaces of fresh Roma tomatoes and cantaloupes. Individual fruit were separately inoculated with each pathogen, then submerged in a water tank and treated with a bubble flow through an air stone using one airflow rate (0–14 liters/min.) for up to 60 s. As airflow increased, L. monocytogenes reduction on tomato and cantaloupe surfaces increased up to 1.2 and 0.8 log CFU/fruit greater than with water alone (no bubbles), respectively. With a 14 L/min flow rate, Salmonella reduction on tomato and cantaloupe surfaces increased up to 0.9 and 0.7 log CFU/fruit greater than when no bubbles applied, respectively. Also, with the bubble treatments, additional pathogen reduction (detached organisms) was observed in the tank water. Therefore, these bubble streams can be used to enhance the detachment of bacteria from fruit surfaces and to inactivate a proportion of these detached microorganisms. Additionally, recoveries of Salmonella from inoculated Roma tomatoes and cantaloupe were determined for treatment water that contained 50 or 150 ppm sodium hypochlorite. Combining both cavitating bubbles and 150 ppm chlorine in the tank water resulted in greater efficacy of removing or inactivating S. Newport from the surface of cantaloupe (2.9 log CFU) than with cavitation (2.5 log CFU) or chlorine (1.9 log CFU) alone. The physical force of a bubble stream on raw produce can effectively detach and inactivate surface bacteria, and has the potential to reduce antimicrobial chemical use and water use in post-harvest packing operations
Antipsychotic dose escalation as a trigger for Neuroleptic Malignant Syndrome (NMS): literature review and case series report
Background: “Neuroleptic malignant syndrome” (NMS) is a potentially fatal idiosyncratic reaction to any medication which affects the central dopaminergic system. Between 0.5% and 1% of patients exposed to antipsychotics develop the condition. Mortality rates may be as high as 55% and many risk factors have been reported. Although rapid escalation of antipsychotic dose is thought to be an important risk factor, to date it has not been the focus of a published case series or scientifically defined.
<p/>Aims: To identify cases of NMS and review risk factors for its development with a particular focus on rapid dose escalation in the 30 days prior to onset.
<p/>Methodology: A review of the literature on rapid dose escalation was undertaken and a pragmatic definition of “rapid dose escalation” was made. NMS cases were defined using DSM-IV criteria and systematically identified within a secondary care mental health service. A ratio of titration rate was calculated for each NMS patient and “rapid escalators” and “non rapid escalators” were compared.
<p/>Results: 13 cases of NMS were identified. A progressive mean dose increase 15 days prior to the confirmed episode of NMS was observed (241.7mg/day during days 1-15 to 346.9mg/day during days 16-30) and the mean ratio of dose escalation for NMS patients was 1.4. Rapid dose escalation was seen in 5/13 cases and non rapid escalators had markedly higher daily cumulative antipsychotic dose compared to rapid escalators.
<p/>Conclusions: Rapid dose escalation occurred in less than half of this case series (n=5, 38.5%), although there is currently no consensus on the precise definition of rapid dose escalation. Cumulative antipsychotic dose – alongside other known risk factors - may also be important in the development of NMS
Recommended from our members
2018 Global Nutrition Report
The 2018 Global Nutrition Report shares insights into the current state of global nutrition, highlighting the unacceptably high burden of malnutrition in the world. It identifies areas where progress has been made in recent years but argues that it is too slow and too inconsistent. It puts forward five critical steps that are needed to speed up progress to end malnutrition in all its forms and argues that, if we act now, it is not too late to achieve this goal. In fact, we have an unprecedented opportunity to do so
Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)
The implicit objective of the biennial "international - Traveling Workshop on
Interactions between Sparse models and Technology" (iTWIST) is to foster
collaboration between international scientific teams by disseminating ideas
through both specific oral/poster presentations and free discussions. For its
second edition, the iTWIST workshop took place in the medieval and picturesque
town of Namur in Belgium, from Wednesday August 27th till Friday August 29th,
2014. The workshop was conveniently located in "The Arsenal" building within
walking distance of both hotels and town center. iTWIST'14 has gathered about
70 international participants and has featured 9 invited talks, 10 oral
presentations, and 14 posters on the following themes, all related to the
theory, application and generalization of the "sparsity paradigm":
Sparsity-driven data sensing and processing; Union of low dimensional
subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph
sensing/processing; Blind inverse problems and dictionary learning; Sparsity
and computational neuroscience; Information theory, geometry and randomness;
Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?;
Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website:
http://sites.google.com/site/itwist1
Nucleocytoplasmic transport: a thermodynamic mechanism
The nuclear pore supports molecular communication between cytoplasm and
nucleus in eukaryotic cells. Selective transport of proteins is mediated by
soluble receptors, whose regulation by the small GTPase Ran leads to cargo
accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear
export. We consider the operation of this transport system by a combined
analytical and experimental approach. Provocative predictions of a simple model
were tested using cell-free nuclei reconstituted in Xenopus egg extract, a
system well suited to quantitative studies. We found that accumulation capacity
is limited, so that introduction of one import cargo leads to egress of
another. Clearly, the pore per se does not determine transport directionality.
Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic
concentration in steady-state. The model shows that this ratio should in fact
be independent of the receptor-cargo affinity, though kinetics may be strongly
influenced. Numerical conservation of the system components highlights a
conflict between the observations and the popular concept of transport cycles.
We suggest that chemical partitioning provides a framework to understand the
capacity to generate concentration gradients by equilibration of the
receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures,
plus Supplementary Material include
Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1
SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions
- …