2,557 research outputs found

    Performance characteristics of wind profiling radars

    Get PDF
    Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages

    A relativistic Glauber approach to polarization transfer in 4He(\vec{e},e'\vec{p})

    Full text link
    Polarization-transfer components for 4He(\vec{e},e'\vec{p})3H are computed within the relativistic multiple-scattering Glauber approximation (RMSGA). The RMSGA framework adopts relativistic single-particle wave functions and electron-nucleon couplings. The predictions with free and various parametrizations for the medium-modified electromagnetic form factors are compared to the world data.Comment: 2 pages, 1 figure Proceedings of the Int. School on Nuclear Physics, 26th Course, Erice (Sicily), September 16th- 24th, 2004; To appear in Progress in Particle and Nuclear Physic

    Polarization Observables for Two-Pion Production off the Nucleon

    Full text link
    We develop polarization observables for the processes γNππN\gamma N\to\pi\pi N and πNππN\pi N\to\pi\pi N, using both a helicity and hybrid helicity-transversity basis. Such observables are crucial if processes that produce final states consisting of a spin-1/2 baryon and two pseudoscalar mesons are to be fully exploited for baryon spectroscopy. We derive relationships among the observables, as well as inequalities that they must satisfy. We also discuss the observables that must be measured in `complete' experiments, and briefly examine the prospects for measurement of some of these observables in the near future.Comment: 20 pages, using revtex

    Impact of endocytosis and lysosomal acidification on the toxicity of copper oxide nano-and microsized particles: Uptake and gene expression related to oxidative stress and the DNA damage response

    Get PDF
    The toxicity of the copper oxide nanoparticles (CuO NP) has been attributed to the so-called “Trojan horse”-type mechanism, relying on the particle uptake and extensive intracellular release of copper ions, due to acidic pH in the lysosomes. Nevertheless, a clear distinction between extra- and intracellular-mediated effects is still missing. Therefore, the impact of the endocytosis inhibitor hydroxy-dynasore (OH-dyn), as well as bafilomycin A1 (bafA1), inhibiting the vacuolar type H+-ATPase (V-ATPase), on the cellular toxicity of nano- and microsized CuO particles, was investigated in BEAS 2 B cells. Selected endpoints were cytotoxicity, copper uptake, glutathione (GSH) levels, and the transcriptional DNA damage and (oxidative) stress response using the high-throughput reverse transcription quantitative polymerase chain reaction (RT-qPCR). OH-dyn markedly reduced intracellular copper accumulation in the cases of CuO NP and CuO MP; the modulation of gene expression, induced by both particle types affecting especially HMOX1, HSPA1A, MT1X, SCL30A1, IL8 and GADD45A, were completely abolished. BafA1 lowered the intracellular copper concentration in case of CuO NP and strongly reduced transcriptional changes, while any CuO MP-mediated effects were not affected by bafA1. In conclusion, the toxicity of CuO NP depended almost exclusively upon dynamin-dependent endocytosis and the intracellular release of redox-active copper ions due to lysosomal acidification, while particle interactions with cellular membranes appeared to be not relevant

    Performance of the Colorado wind-profiling network, part 1.5A

    Get PDF
    The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed

    Strong-field effects in the Rabi oscillations of the superconducting phase qubit

    Full text link
    Rabi oscillations have been observed in many superconducting devices, and represent prototypical logic operations for quantum bits (qubits) in a quantum computer. We use a three-level multiphoton analysis to understand the behavior of the superconducting phase qubit (current-biased Josephson junction) at high microwave drive power. Analytical and numerical results for the ac Stark shift, single-photon Rabi frequency, and two-photon Rabi frequency are compared to measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions. Good agreement is found between theory and experiment.Comment: 4 pages, 4 figures, accepted for publication in IEEE Trans. Appl. Supercon

    Implementation and Validation of Range Imaging on a UHF Radar Wind Profiler

    Get PDF
    The available range resolution of pulsed radar wind profilers is usually limited by bandwidth restrictions. Range imaging (RIM) has recently been developed as a means of mitigating these limitations by operating the wind profilers over a small set of distinct transmitter frequencies. A constrained optimization method can then be used to generate high-resolution maps of the reflectivity field as a function of range. This paper presents a description of how the RIM technique has been recently implemented on the Platteville 915-MHz tropospheric profiler, the first such implementation at UHF. Examples of data collected during a two-part experiment on 10 April 2001 using the Platteville 915-MHz tropospheric profiler are presented. In the first part, an intercomparison was made involving measurements from RIM and standard radar techniques. It is shown that available frequency bandwidth can be very effectively utilized through the RIM processing. In the second part of the experiment, RIM was applied to radar observations collected with a short (0.5 s) transmit pulse. The resulting data include observations of a thin, persistent scattering layer attributed to a subsidence inversion and billows from a Kelvin– Helmholtz instability. Estimates of the width of the layer were found to be as small as 12 m

    Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study

    Get PDF
    Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).<p></p> Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.<p></p> Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.<p></p> Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.<p></p&gt

    Direct SUSY dark matter detection-Theoretical rates due to the spin

    Full text link
    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus the direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: i) The coherent mode, due to the scalar interaction and ii) The spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and, in directional experiments, the correlation of the event rates with the sun's motion. In standard non directional experiments the modulation is small, less than two per cent. In the case of the directional event rates we like to suggest that the experiments exploit two features, of the process, which are essentially independent of the SUSY model employed, namely: 1) The forward-backward asymmetry, with respect to the sun's direction of motion, is very large and 2) The modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the Earth at the maximum is direction dependent.Comment: 16 Latex pages, 15 figures, 3 table
    corecore