878 research outputs found
Hydrodynamically enforced entropic trapping of Brownian particles
We study the transport of Brownian particles through a corrugated channel
caused by a force field containing curl-free (scalar potential) and
divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs
approach leading to an effective one-dimensional description involving the
potential of mean force. As an application, the interplay of a pressure-driven
flow and an oppositely oriented constant bias is considered. We show that for
certain parameters, the particle diffusion is significantly suppressed via the
property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter
Giant enhancement of hydrodynamically enforced entropic trapping in thin channels
Using our generalized Fick-Jacobs approach [Martens et al., PRL 110, 010601
(2013); Martens et al., Eur. Phys. J. Spec. Topics 222, 2453-2463 (2013)] and
extensive Brownian dynamics simulations, we study particle transport through
three-dimensional periodic channels of different height. Directed motion is
caused by the interplay of constant bias acting along the channel axis and a
pressure-driven flow. The tremendous change of the flow profile shape in
channel direction with the channel height is reflected in a crucial dependence
of the mean particle velocity and the effective diffusion coefficient on the
channel height. In particular, we observe a giant suppression of the effective
diffusivity in thin channels; four orders of magnitude compared to the bulk
value.Comment: 16 pages, 8 figure
Transport of a colloidal particle driven across a temporally oscillating optical potential energy landscape
A colloidal particle is driven across a temporally oscillating one-dimensional optical potential energy landscape and its particle motion is analysed. Different modes of dynamic mode locking are observed and are confirmed with the use of phase portraits. The effect of the oscillation frequency on the mode locked step width is addressed and the results are discussed in light of a high-frequency theory and compared to simulations. Furthermore, the influence of the coupling between the particle and the optical landscape on mode locking is probed by increasing the maximum depth of the optical landscape. Stronger coupling is seen to increase the width of mode locked steps. Finally, transport across the temporally oscillating landscape is studied by measuring the effective diffusion coefficient of a mobile particle, which is seen to be highly sensitive to the driving velocity and mode locking
Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models
Chemical reactions inside cells occur in compartment volumes in the range of
atto- to femtolitres. Physiological concentrations realized in such small
volumes imply low copy numbers of interacting molecules with the consequence of
considerable fluctuations in the concentrations. In contrast, rate equation
models are based on the implicit assumption of infinitely large numbers of
interacting molecules, or equivalently, that reactions occur in infinite
volumes at constant macroscopic concentrations. In this article we compute the
finite-volume corrections (or equivalently the finite copy number corrections)
to the solutions of the rate equations for chemical reaction networks composed
of arbitrarily large numbers of enzyme-catalyzed reactions which are confined
inside a small sub-cellular compartment. This is achieved by applying a
mesoscopic version of the quasi-steady state assumption to the exact
Fokker-Planck equation associated with the Poisson Representation of the
chemical master equation. The procedure yields impressively simple and compact
expressions for the finite-volume corrections. We prove that the predictions of
the rate equations will always underestimate the actual steady-state substrate
concentrations for an enzyme-reaction network confined in a small volume. In
particular we show that the finite-volume corrections increase with decreasing
sub-cellular volume, decreasing Michaelis-Menten constants and increasing
enzyme saturation. The magnitude of the corrections depends sensitively on the
topology of the network. The predictions of the theory are shown to be in
excellent agreement with stochastic simulations for two types of networks
typically associated with protein methylation and metabolism.Comment: 13 pages, 4 figures; published in The Journal of Chemical Physic
How accurate are the non-linear chemical Fokker-Planck and chemical Langevin equations?
The chemical Fokker-Planck equation and the corresponding chemical Langevin
equation are commonly used approximations of the chemical master equation.
These equations are derived from an uncontrolled, second-order truncation of
the Kramers-Moyal expansion of the chemical master equation and hence their
accuracy remains to be clarified. We use the system-size expansion to show that
chemical Fokker-Planck estimates of the mean concentrations and of the variance
of the concentration fluctuations about the mean are accurate to order
for reaction systems which do not obey detailed balance and at
least accurate to order for systems obeying detailed balance,
where is the characteristic size of the system. Hence the chemical
Fokker-Planck equation turns out to be more accurate than the linear-noise
approximation of the chemical master equation (the linear Fokker-Planck
equation) which leads to mean concentration estimates accurate to order
and variance estimates accurate to order . This
higher accuracy is particularly conspicuous for chemical systems realized in
small volumes such as biochemical reactions inside cells. A formula is also
obtained for the approximate size of the relative errors in the concentration
and variance predictions of the chemical Fokker-Planck equation, where the
relative error is defined as the difference between the predictions of the
chemical Fokker-Planck equation and the master equation divided by the
prediction of the master equation. For dimerization and enzyme-catalyzed
reactions, the errors are typically less than few percent even when the
steady-state is characterized by merely few tens of molecules.Comment: 39 pages, 3 figures, accepted for publication in J. Chem. Phy
ââLozengeââ contour plots in scattering from polymer networks
We present a consistent explanation for the appearance of âlozengeâ shapes in contour plots of the two dimensional scattering intensity from stretched polymer networks. By explicitly averaging over quenched variables in a tube model, we show that lozenge patterns arise as a result of chain material that is not directly deformed by the stretch. We obtain excellent agreement with experimental data
Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodynamic pictures
Friction in liquids arises from conservative forces between molecules and atoms. Although the hydrodynamics at the nanoscale is subject of intense research and despite the enormous interest in the non-Markovian dynamics of single molecules and solutes, the onset of friction from the atomistic scale so far could not be demonstrated. Here, we fill this gap based on frequency-resolved friction data from high-precision simulations of three prototypical liquids, including water. Combining with theory, we show that friction in liquids emerges abruptly at a characteristic frequency, beyond which viscous liquids appear as non-dissipative, elastic solids. Concomitantly, the molecules experience Brownian forces that display persistent correlations. A critical test of the generalised StokesâEinstein relation, mapping the friction of single molecules to the visco-elastic response of the macroscopic sample, disproves the relation for Newtonian fluids, but substantiates it exemplarily for water and a moderately supercooled liquid. The employed approach is suitable to yield insights into vitrification mechanisms and the intriguing mechanical properties of soft materials
Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators
The linear noise approximation (LNA) offers a simple means by which one can
study intrinsic noise in monostable biochemical networks. Using simple physical
arguments, we have recently introduced the slow-scale LNA (ssLNA) which is a
reduced version of the LNA under conditions of timescale separation. In this
paper, we present the first rigorous derivation of the ssLNA using the
projection operator technique and show that the ssLNA follows uniquely from the
standard LNA under the same conditions of timescale separation as those
required for the deterministic quasi-steady state approximation. We also show
that the large molecule number limit of several common stochastic model
reduction techniques under timescale separation conditions constitutes a
special case of the ssLNA.Comment: 10 pages, 1 figure, submitted to Physical Review E; see also BMC
Systems Biology 6, 39 (2012
- âŠ