217 research outputs found

    Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids

    Full text link
    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motions in liquids, typically spanning no more than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent can absorb any vibrational energy within this "band", but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? We develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate -- and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high frequency relaxation. The many-body features of the liquid only appear in the guise of a purely equilibrium problem, that of finding the likelihood of particularly effective solvent arrangements around the solute. These results are tested numerically on model diatomic solutes dissolved in atomic fluids (including the experimentally and theoretically interesting case of I_2 in Xe). The instantaneous pair theory leads to results in quantitative agreement with those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199

    Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems

    Get PDF
    A relationship between the time scales of quantum coherence loss and short-time solvent response for a solute/bath system is derived for a Gaussian wave packet approximation for the bath. Decoherence and solvent response times are shown to be directly proportional to each other, with the proportionality coefficient given by the ratio of the thermal energy fluctuations to the fluctuations in the system-bath coupling. The relationship allows the prediction of decoherence times for condensed phase chemical systems from well developed experimental methods.Comment: 10 pages, no figures, late

    Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids

    Full text link
    We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to calculations of the velocity autocorrelation function Z(t)Z(t) and diffusion coefficient DD. The model trajectory consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting predictions for Z(t)Z(t) and DD agree remarkably well with MD simulations of Na at up to almost three times its melting temperature. Two independent processes in the model relax velocity autocorrelations: (a) dephasing due to the presence of many frequency components, which operates at all temperatures but which produces no diffusion, and (b) the transit process, which increases with increasing temperature and which produces diffusion. Because the model provides a single-atom trajectory in real space and time, including transits, it may be used to calculate all single-atom correlation functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and cond-mat/0002058 combined Minor changes made to coincide with published versio

    A semiclassical trace formula for the canonical partition function of one dimensional systems

    Get PDF
    We present a semiclassical trace formula for the canonical partition function of arbitrary one-dimensional systems. The approximation is obtained via the stationary exponent method applied to the phase-space integration of the density operator in the coherent state representation. The formalism is valid in the low temperature limit, presenting accurate results in this regime. As illustrations we consider a quartic Hamiltonian that cannot be split into kinetic and potential parts, and a system with two local minima. Applications to spin systems are also presented.Comment: 22 pages, 4 figures new section with applications to spin system

    Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: The potential energy landscape ensemble

    Full text link
    In principle, all of the dynamical complexities of many-body systems are encapsulated in the potential energy landscapes on which the atoms move - an observation that suggests that the essentials of the dynamics ought to be determined by the geometry of those landscapes. But what are the principal geometric features that control the long-time dynamics? We suggest that the key lies not in the local minima and saddles of the landscape, but in a more global property of the surface: its accessible pathways. In order to make this notion more precise we introduce two ideas: (1) a switch to a new ensemble that removes the concept of potential barriers from the problem, and (2) a way of finding optimum pathways within this new ensemble. The potential energy landscape ensemble, which we describe in the current paper, regards the maximum accessible potential energy, rather than the temperature, as a control variable. We show here that while this approach is thermodynamically equivalent to the canonical ensemble, it not only sidesteps the idea of barriers, it allows us to be quantitative about the connectivity of a landscape. We illustrate these ideas with calculations on a simple atomic liquid and on the Kob-Andersen model of a glass-forming liquid, showing, in the process, that the landscape of the Kob-Anderson model appears to have a connectivity transition at the landscape energy associated with its mode-coupling transition. We turn to the problem of finding the most efficient pathways through potential energy landscapes in our companion paper.Comment: 43 pages, 7 figure

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file
    corecore