936 research outputs found

    A Peer-to-Peer Architecture for e-Science

    Get PDF

    Jointly Optimal Routing and Caching for Arbitrary Network Topologies

    Full text link
    We study a problem of fundamental importance to ICNs, namely, minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.Comment: This is the extended version of the paper "Jointly Optimal Routing and Caching for Arbitrary Network Topologies", appearing in the 4th ACM Conference on Information-Centric Networking (ICN 2017), Berlin, Sep. 26-28, 201

    Truthful Linear Regression

    Get PDF
    We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals' privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.Comment: To appear in Proceedings of the 28th Annual Conference on Learning Theory (COLT 2015

    Learning Mixtures of Linear Classifiers

    Full text link
    We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring' trick, that discovers the subspace spanned by the classifiers' parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency

    COMPENSATING VARIATION FOR RECREATIONAL POLICY: A RANDOM UTILITY APPROACH TO BOATING IN FLORIDA

    Get PDF
    A nested logit random utility travel cost model is developed for recreational boating in southwest Florida. Using data from a survey of recreational boaters, the model estimates site choice probabilities and compensating variation for changes in boating speed limits. Behavior is modeled as a two-step, discrete-choice process, where boaters first select a launch point for their trailered boats, then select a boating destination based on site characteristics. The results of this particular model are currently being used in policy applications in Florida.Resource /Energy Economics and Policy,
    corecore