
Modeling Multithreaded Query Execution on Chip
Multiprocessors

Konstantinos Krikellas ‡

Greenplum Inc.

kkrik@greenplum.com

Stratis D. Viglas
School of Informatics

University of Edinburgh

sviglas@inf.ed.ac.uk

Marcelo Cintra
School of Informatics

University of Edinburgh

mc@inf.ed.ac.uk

ABSTRACT
Modern CPUs follow multicore designs with multiple threads
running in parallel. The dataflow of query processing algo-
rithms needs to be adapted to exploit such designs. We
identify memory accesses and thread synchronization as the
main bottlenecks in a multicore execution environment. We
present a uniform framework to mitigate the impact of these
bottlenecks in multithreaded versions of the most frequently
used query processing algorithms, namely sorting, partition-
ing, join evaluation, and aggregation. We analytically model
the expected performance and scalability of the proposed al-
gorithms. We conduct an extensive experimental analysis of
both the analytical model and the algorithms. Our results
show that: (a) the analytical model adequately captures
the performance of the algorithms, and (b) the algorithms
themselves achieve considerable speedups compared to their
single-threaded counterparts.

1. INTRODUCTION
This paper presents a detailed analysis of multithreaded

query execution on multicore processors. Extending the el-
ementary query evaluation operators for multithreaded pro-
cessing is far from straightforward. Multithreading intro-
duces resource contention that penalizes scalability; cores
share resources both at the hardware (caches and physi-
cal memory) and at the software (lock-based synchroniza-
tion) levels, thereby restricting the degree of parallelism. To
counter that we posit that multiple threads should indepen-
dently process cache-resident data to the highest possible
extent, thereby minimizing contention and enhancing par-
allelism. To that end we: (a) propose a uniform framework
to generalize the most frequently used query processing al-
gorithms for multithreaded execution, and (b) present an
analytical model to estimate the multithreaded performance
of the proposed algorithms. The model statically estimates
the speedup of multithreaded execution. To the best of our
knowledge, this is the first paper that provides a uniform
framework for and an analytical performance model of mul-
tithreaded query execution on chip multiprocessors.
Multicore means shared memory. Modern CPUs inte-
grate multiple cores and provide hardware support for paral-
lel processing. Their architecture resembles shared-memory
systems: the cores share main memory and, possibly, the
lowest level of the cache hierarchy. Query evaluation on this
type of parallel systems has been tackled before (e.g., [9]);
previous work, however, has not taken into consideration the

‡Work done while author was at the University of Edinburgh.

cache hierarchy and its impact on multithreaded execution.
As shown in [1, 14, 16], database workloads suffer from ex-
cessive stalls due to the high latency of memory operations.
This is aggravated in multicore processors as the memory
subsystem serves requests from multiple cores [18, 23].
Busier is faster. Multicore processors have more “raw”
processing power, which is not harvested when executing
data-intensive workloads. To alleviate this, we propose to
exploit cache locality by maximizing the amount of process-
ing whenever a data block is in the CPU caches. For ex-
ample, “pushing” more query-relevant processing into par-
titioning an input may result in an extra per-thread process-
ing cost of 13%; however, the cores are now busier processing
instead of waiting for memory operations. The busier a core
is with processing cache-resident data, the less it contends
with the other cores for accessing the memory. The extra
per-thread cost in the previous example results in an al-
most three-fold improvement in the Cycles Per Instruction
(CPI) ratio when the technique is applied to a quad-core In-
tel Xeon E5420 CPU. In turn, this speeds up the execution
of the entire query.

We apply this approach to the prominent query evalua-
tion algorithms and provide a uniform framework for mul-
tithreaded processing. Our goals are to: (a) minimize data
transfers from main memory, and (b) evenly distribute both
work and data across multiple threads. To minimize syn-
chronization overhead we assign different input and output
streams to each thread; locking (if any) is performed on a
coarse granularity, thus aiding parallel execution.
Modeling scalability. To assess multithreaded execution,
we analytically model the effect of input cardinality, tuple
size, selectivity, and projectivity to performance, according
to the characteristics of the host hardware. We introduce
the multithreaded utility ratio: the ratio of the time spent for
fetching each input unit to its total processing time. High
values of the ratio denote fetch-dominated operations; in this
case memory accesses incur an inflated effective cost, thus
restricting scalability. Conversely, low values of the util-
ity ratio show that there is sufficient computational load to
overlap with data fetching, so thread contention for memory
accesses is limited and scalability is enhanced. Using this ra-
tio, we analytically estimate the query processing cost and
the expected speedup of multithreaded execution.
Contributions. The main contributions of this work can
be outlined as follows:
• We give a uniform framework to extend existing query

processing algorithms for multithreaded execution on
multicore CPUs.
• We present partitioning and buffering techniques that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Execution Engine

D1-cache I1-cache

Core 1

L2-Cache L2-Cache

System Bus

M a i n  m e m o r y

CPU

Execution Engine

D1-cache I1-cache

Core 2

Execution Engine

D1-cache I1-cache

Core 3
Execution Engine

D1-cache I1-cache

Core 4

Figure 1: The architecture of the Intel Xeon E5420

determine which part of the input each thread pro-
cesses and where in the memory hierarchy it is buffered.

• We introduce an analytical model to accurately esti-
mate the speedup of multithreaded query execution.

The rest of this paper is organized as follows: in Section 2
we present the main characteristics of multicore CPUs. In
Section 3 we give a general framework for multithreaded
execution and algorithms for the main query processing op-
erations. We analytically model the proposed algorithms
in Section 4, while in Section 5 we conduct an experimental
study of our proposals. We present related work in Section 6
and conclude in Section 7.

2. CHIP MULTIPROCESSORS
During the past decade, the dominant trend in processor

design is the integration of multiple processing cores on the
same die. Termed chip multiprocessors (CMPs), multicore
chips natively support parallel execution, while combining
scalability with energy efficiency [11]. Multicore chips have
been implemented in various ways. The main difference is
the type of parallelism supported by each core. Some proces-
sor designs, e.g., the Intel Quad Core and the AMD Phenom,
support out-of-order execution and Instruction-Level Paral-
lelism (ILP); alternatively, the pipelines of the Sun Ultra-
SPARC T2 and the IBM Power 6 support only in-order ex-
ecution but use Thread-Level Parallelism (TLP). There are
also hybrid designs, e.g., the Intel Core i7 CPU, which com-
bine out-of-order execution with hardware supported mul-
tithreading, similar to Simultaneous Multithreading. A de-
tailed analysis of design trends in processor architecture and
their effect on the execution of OLTP and DSS workloads,
can be found in [10].

Designs also differ in terms of the memory hierarchy, specif-
ically whether on-chip caches are shared between all or some
of the cores. In Figure 1 we sketch the Intel Xeon E5420
quad-core processor: each pair of cores shares a common L2-
cache and cores from different pairs communicate through
the memory bus. In other designs, e.g., the AMD Phenom
and the Intel Core i7, each core has its own L1- and L2-
caches, while all cores share a common on-chip L3-cache.
The salient challenge in multicore CPUs is to keep all cores
processing data at rates close to their clock. To do so, manu-
facturers improve memory throughput by integrating mem-
ory controllers inside the chip and using multiple memory
banks. Still, if the caches and the memory are concurrently
accessed by all cores, contention for their utilization may
increase the latency of memory operations and degrade per-
formance.

As multiple cores share main memory but not necessarily
individual caches, it is common practice to replicate data
inside the caches of different cores to enhance parallelism.

Cache coherency involves the propagation of data writes
from one core to the others. Caches are organized in small
blocks termed cache lines. When one cache line is shared
between cores and is updated by one of them, the other
cores invalidate their cached copy and refetch the cache line
on the next access. Invalidation takes place on true shar-
ing, i.e., cores access the same data of the cache line, or
on false sharing, i.e., when one core updates a part of the
cache line that no other core accesses. Coherency protocols
“snoop” updates to all cores or use directories to maintain
data sharing information [11].

Concurrent execution at the hardware level (i.e., process-
ing independently scheduled threads) does not imply syn-
chronization at the software level. The latter is achieved by
providing hardware support for atomic operations through
mutexes and spin locking. Each mutex is a memory word
set to 0 when free and 1 when locked; to operate on the
mutex, a core must have it in its D1-cache. To acquire a
lock, a core continuously probes the mutex (i.e., the core
“spins”) using the compare-and-swap instruction. Once the
lock is acquired the core executes the synchronized code and
resets the lock. Each core spins on a locally cached copy of
the mutex without affecting other cores. Whenever the mu-
tex is released, cache coherency requires that the cache line
containing it be invalidated and refetched. The first core
to refetch the cache line will acquire the lock; other cores
waiting on the lock will continue to spin.

3. MULTITHREADED PROCESSING
We now provide a framework for parallelizing the most fre-

quently used query processing algorithms [8]: sorting, par-
titioning, join evaluation, and aggregation. To that end:

• We use the N-ary Storage Model (NSM) with tuples
stored consecutively within pages of 4kB. Each table
resides in its own file on disk; a storage manager is
responsible for caching file pages in the buffer pool.
We do not use vertical partitioning as we want to keep
the same baseline with most commercial and research
database systems. We also want to explicitly account
for the interaction between the query engine and the
storage manager in our analysis.

• Our techniques only depend on the number of threads
that can be efficiently supported by hardware. Nat-
urally, the techniques need to be “fitted” to a spe-
cific CPU but the approach is uniform and remains
largely the same across CPUs. For instance, the Intel
Xeon 5400 series of quad-core processors of Figure 1
(the one also used in our experiments) has per-core
pipelines supporting out-of-order execution. However,
there is no in-core support for TLP so only four con-
current threads are supported by hardware. We will
be pointing out any such subtleties that require fitting
the data flow to each CPU.

Our approach stems from the observation that CMPs are
in essence shared-memory systems. Parallel query evalu-
ation has been tackled before [7, 9]; the rule of thumb is
to split the input in disjoint partitions and then process
them in parallel. However, the näıve extension of this tech-
nique for multicores would not take advantage of the cache
hierarchy’s buffering effect. For example, synchronizing ac-
cesses to a shared hash table would severely penalize perfor-
mance in case the table does not fit inside caches [3]. Thus,



Figure 2: Multithreaded operator implementation

we fine-tune the implementation of partitioning and paral-
lel processing to the characteristics of multicore processors.
We focus on reducing concurrent memory requests by in-
terleaving memory accesses and cached data processing to
the highest possible extent. This technique keeps the cores
busy and reduces memory stalls. We also avoid using fine-
grained thread synchronization. Threads are initialized once
for each operation and use restricted affinity (i.e., they are
assigned to a specific core); that way they can run with the
minimum synchronization overhead. Finally, we pay special
attention to avoid false sharing: we align shared data (such
as mutexes) with the size of the cache line and replicate
writeable variables and buffers for each thread.

An example of the uniform framework for the implemen-
tation of each operator is shown in Figure 2. The input is
first split in as many “splits” as there are threads of execu-
tion that can be efficiently supported by hardware (e.g., four
splits for the Intel Xeon 5400, eight splits for the Intel Core
i7). For each primary table we divide the total page count by
the number of threads; each split is assigned to one thread.
Next, we partition the input in disjoint partitions using the
specified number of threads. Each thread scans its split and
writes tuples to appropriate output partitions. We do not
use tuple references, but copy to the partitions the fields re-
quired for further processing. That way we increase cache
locality and avoid uncontrollable and costly random access
patterns outside the cache hierarchy. After partitioning all
inputs, we invoke a new team of threads to process the par-
titions. A set of disjoint partitions is assigned to each thread
and processed with no synchronization overhead. Threads
store output tuples to individually assigned output buffers.
The set of all output buffers is the final operator output that
will either be used by subsequent operators, or be forwarded
to the client as a final result.

3.1 Data staging
During data staging selections and projections are applied

and the input is appropriately “formatted”. For example,
for merge join, inputs are sorted, while for hash join the
input is hash-partitioned. Our measurements have shown
that data staging can take up to 90% of the total execution
time of an operator. It is therefore important to adapt all
common staging algorithms for multithreaded execution.

Our algorithms use partitioning for multithreaded pro-
cessing with minimal overhead. The main algorithms are:
(a) range partitioning, (b) hash partitioning, and (c) value
mapping. Range partitioning generates partitions contain-
ing tuples within a specific range of values of the partitioning
attribute. Value distribution statistics, e.g., histograms, can
be used to extract the bounds of each partition to balance
the distribution of tuples to partitions. Hash partitioning
uses hash and modulo computations to map tuples to parti-
tions with no assumption on value distributions. This leads
to similarly sized partitions. Finally, the values of the par-
titioning attribute can be directly mapped to partitions, a
technique applicable if the partitioning attribute has only a
few distinct values. We elaborate on each staging algorithm.
Sorting. We build on the AlphaSort algorithm [19], where
input partitions fitting the cache hierarchy are sorted with
quicksort and then merged through multi-way merging. We
use N hardware-supported threads to sort partitions and

assign
`

1
N

´th
of the total number of input pages to each

thread. Each thread applies quicksort to partitions that fit
inside its share of the lowest cache level. For example, in
the Intel Xeon processor of Figure 1 the partition size is less
than half the size of the L2-cache; for the AMD Phenom
quad-core processor, where each core has its own L2-cache
and shares the on-chip L3-cache, the partition size should
be less than a quarter of the capacity of the L3-cache.

After sorting each partition we invoke N new threads to
merge the partitions. We use range partitioning to separate
work. We assign a specific range of values to each thread,
as shown in Figure 3 (value ranges are individually shaded).
Each thread processes only the part of each partition that
contains values in its assigned range. The sorting threads
specify the tuple range for each merging thread in each par-
tition during the previous step. Through value statistics, it
is possible to assign ranges to threads so that each thread
will output approximately the same number of tuples. That
way all threads will have comparable processing rates. Each
merging thread maintains a heap of the currently examined
tuples from each partition to identify the tuple with the min-
imum value. Note that no synchronization is needed during
sorting since threads process disjoint datasets.

We tackle data skew using static and dynamic techniques.
To assign value ranges to threads, the system exploits his-
tograms and cardinality statistics to compute ranges that
are estimated to create partitions of similar size. We fur-
ther adopt a dynamic approach similar to the one presented
in [13]. Threads are initially assigned a specific value range,

assuming that each thread will approximately process |K|
N

tuples, where |K| is the input cardinality. When a thread

has processed
“
|K|
N

+ thres
”

tuples, where threshold thres is

the expected overflow factor, the input is skewed, so other
threads have already processed the tuples within their as-
signed value range. At that point, all threads join and the
remaining input is redistributed to them. This process is



7
8

1 1
1

1 8
1 2
1 4
7
9

1 9
8
2
1
3

1 4
5

1 8
2 0
1 6
1 2

Sort
T h r e a d  # 1

1
1
2
3
5

7
7
8
8
9

1 1
1 2
1 2
1 4
1 4

1 6
1 8
1 8
1 9
2 0

Sort
T h r e a d  # 2

Sort
T h r e a d  # 3

Sort
T h r e a d  # 4

M e r g e
T h r e a d  # 1

[ 1 , 5 ]

M e r g e
T h r e a d  # 2

[ 6 , 1 0 ]

M e r g e
T h r e a d  # 3

[ 1 1 , 1 5 ]

M e r g e
T h r e a d  # 4

[ 1 6 , 2 0 ]

1
7
8

1 1

1 8
7
9

1 2
1 4
1 9

1
2
3
8

1 4
5

1 2

1 6
1 8
2 0

Figure 3: Multithreaded sorting

repeated until the input is entirely sorted.
Partitioning. Hash and range partitioning use the same
multithreaded process, the difference being the function used
to forward tuples to partitions. As shown in Figure 2, each
thread scans its split of input pages and forwards tuples
to partitions by applying a partitioning function. We use
buffering on a page granularity, as each thread uses one page
from each partition to store tuples. When a page fills up,
the thread replaces it with a new one through a call to the
storage manager.

This simple approach has two drawbacks. Firstly, stor-
age manager interaction needs to be an atomic operation;
thus, requests to the storage manager need to be serialized.
Secondly, and more importantly, the only per-tuple process-
ing is the evaluation of the partitioning function. This re-
quires at most a few tens of CPU cycles, while fetching data
from main memory costs an order of magnitude more. Since
memory is a shared resource across all cores, if multiple cores
issue memory requests concurrently, memory operations will
be queued [18] and their effective latency will increase; this
restricts the scalability of multithreaded partitioning. We
have verified this hypothesis for the Intel Xeon 5400 proces-
sor, which uses a single memory bus, but it is likely to hold
for processors with multiple embedded memory controllers.

The solution we propose is to maximize reuse by process-
ing the input to a greater extent once it is cache-resident.
One way of doing so is sorting each full partition page be-
fore replacing it with a new page. That way, the partition
page is prepared to be further processed at a negligible cost.
If the number of partitions is moderate we can expect the
page to be inside the L2-cache (or even the L1-cache) be-
fore being sorted, thus sorting is performed efficiently. Since
the partitions end up containing sorted pages, one merging
phase per partition is needed to sort it. This step can be
integrated with query evaluation, as we shall see in Sec-
tions 3.2 and 3.3. This technique resembles the MapReduce
algorithm [6]; we combine partitioning with page sorting to
better adapt execution to the characteristics of CMPs.

To quantify the difference between partitioning alone, as
used in previous work on parallel DBMSs, and the proposed
integration of page sorting to partitioning, we compare the

Listing 1: Accessing the mapping directory
i n t offset = lookup ( directory , value ) ;
i f ( offset < 0) {

lock ( directory . lock ) ;
offset = lookup ( directory , value ) ;
i f ( offset < 0) offset = insert ( directory , value ) ;
unlock ( directory . lock ) ;

}

Algorithm Threads Time CPI
L2-cache Pending
misses requests

Partition
1 0.085s 1.68 335 4672
4 0.072s 3.86 699 11086

Partition 1 0.148s 1.21 342 7556
and Sort 4 0.083s 1.41 661 9008

Table 1: Profiling results for partitioning

results of hardware profiling for these two techniques on the
CPU of Figure 1 in Table 1.1 The input table has 1M tuples
of 72 bytes each. The overhead of partitioning the input
while sorting each partition page in single-threaded execu-
tion is 74% over partitioning the input alone, but is reduced
to 13% when four threads are used. Furthermore, though in
both cases the L2-cache misses increase (due to the interac-
tion with the storage manager and thread synchronization),
simple multithreaded partitioning increases the CPI ratio by
a factor of 2.3 and the number of pending memory requests
by a factor of 2.4; combined partitioning and sorting re-
sults in a slight increase of a factor of 1.2 for the CPI ratio
and the pending requests. The above show that, though
the same dataset is accessed in both cases, the cores need
to wait longer for memory operations in hash partitioning
alone because they all attempt to access main memory at
the same time. When combining partitioning with sorting,
while one core is busy sorting a page, the remaining cores
face less contention for memory operations. Synchronization
overhead is also reduced as the time to obtain a reference to
a new page from the storage manager is only a small portion
of the time to fetch a page and sort it.
Value mapping. If the partitioning attribute has a small
number of distinct values, one can map each value to a spe-
cific partition, using a directory to maintain this mapping.
We use a sorted array of attribute values and perform binary
search for lookups. Hash-based solutions are also possible;
we preferred binary search to avoid the effect of data skew
in a data structure that is heavily used. Note that there
is a limit beyond which this approach becomes inefficient:
if the partitioning attribute has a high distinct cardinality
the mapping directory will span outside the L1-cache and
accesses will trigger cache misses.

Each thread scans its assigned input split and copies its
tuples to the corresponding partitions. Since tuple pro-
cessing requires a directory lookup (and may trigger an in-
sertion), there is sufficient computational load to overlap
with memory operations, resulting in considerable speedups.
The more entries the directory has, the closer to linear the
speedup will be: the time spent on lookups dominates the
cost of fetching data. Note that since the number of distinct
values is small, all cores share the same directory. In List-
ing 1 we show the code to synchronize directory insertions
and lookups. The synchronization penalty is paid until the
directory contains all entries. From then on threads repli-
cate the directory inside each core’s L1-cache and perform
lookups without locking it.

1We show sample counts for L2-cache misses and pending
memory requests extracted with the OProfile tool [20].



3.2 Join evaluation
Merge join. The input tables are staged by sorting them
on the join attributes. After sorting the input tables, we
initialize a new set of threads to evaluate the join predicate.
Each thread processes a specific value range of the join at-
tribute and evaluates the join for corresponding partitions;
there is also a separate output buffer per thread. Data skew
is treated using the techniques for merging sorted partitions
of Section 3.1. As partitions are disjoint there is no synchro-
nization overhead. The only performance restriction is the
ability of the memory subsystem to provide the cores with
data in the rates the threads consume them.
Hash join. Recall that during hash partitioning each page
of each partition is also sorted. Thus, there is no need to
build per-partition hash tables during the join phase. Each
input is partitioned using a fanout wide enough for the
largest corresponding partitions of each table to fit in the
lowest cache level. For example, if we join table A of size
100MB with table B of size 250MB using four threads on
a quad-core processor with a shared 8MB L2-cache (and no
L3-cache), the partitions of both tables should be smaller
than 1MB: during the join phase the threads sharing the
L2-cache will be joining two partitions each. Thus, we use
a fanout of at least 250 for both tables (i.e., the size of
the largest table over the target size of each partition). In
practice, it is better to use higher fanouts (even double).
Doing so will amortize the variance in partition sizes, and
procure for space to hold instructions and data belonging to
the operating system and the storage manager, as well as
the merging buffers that will be shortly introduced.

After partitioning the inputs and individually sorting the
partition pages, we start new threads to join the correspond-
ing partitions. Each thread processes a disjoint set of par-
titions, so all threads work independently. To address data
skew, partitions are allocated to threads so their combined
size is approximately equal for each thread. The first step
is to merge the pages of each partition and generate a fully
sorted partition. As this is repeated for all partitions, we
dedicate a single output buffer per thread and we (re)use it
to store the tuples of each partition in sorted order. Since the
partition size is small, one can expect the merging buffers for
all threads to remain inside the lower cache level during the
join process, thus avoiding accesses to main memory. After
merging, we join corresponding partitions just as in merge
join. Note that the partitions have already been brought in
the lowest cache level so this step is efficient. Our hybrid
join technique interleaves computation with memory oper-
ations and efficiently exploits the cache hierarchy; at the
same time it incurs negligible synchronization overhead.
Map join. If the join attributes have a small number of dis-
tinct values we stage the inputs using value mapping. We
then join the partitions for the same attribute value with
nested loops join. Map join is applicable only if both inputs
have a small distinct value cardinality. Its performance de-
grades as more entries appear in the mapping directory: as
the directory grows it will not fit in the L1-cache, so lookups
trigger cache misses.

3.3 Aggregation algorithms
Sort aggregation. We first sort blocks of the input on
the grouping attributes. In line with performing as much
computation as we can during data staging, we modify the
merging phase of Section 3.1 to incorporate the on-the-fly

R.a
value id

x 0
y 1
z 2

R.b
value id

A 0
B 1
C 2

R.c
value id

10 0
20 1
30 2
40 3

(a) Multiple mapping directories

Offset(R.a = y, R.b = C, R.c = 20)
= R.a[y] · |R.b| · |R.c|+ R.b[C] · |R.c|+ R.c[20]
= 1 · 3 · 4 + 2 · 4 + 1 = 21

(b) Offset of aggregate value

Figure 4: Mapping directories for aggregation

evaluation of the aggregate functions. That way, we avoid
flushing the sorted output to memory and refetching it to the
caches to compute the aggregate values of each group. Doing
so reduces main memory accesses and enhances parallelism.
Partition-based aggregation. We first hash- or range-
partition the input and individually sort the pages of each
partition (see also Section 3.1). The partitioning fanout can
be smaller than the one used in join evaluation, as there is
only one input. Next, we invoke new threads, each process-
ing disjoint sets of partitions. For each partition, the thread
merges the sorted pages; instead of saving the output to a
merge buffer (as with join evaluation) it directly evaluates
the aggregate values per group and outputs them, which
significantly reduces the number of memory operations.
Map aggregation. If all grouping attributes have small
distinct value cardinalities, we can aggregate in a single pass.
The input is first split to the number of threads used. We
keep a mapping directory for each grouping attribute, with
directories shared across threads. We generate an array of
aggregate values, one per aggregate function per thread. A
thread looks up each tuple in each directory and finds the
row to update in its private array of aggregate values. For
example, consider grouping a table R on fields a, b and c.
The mapping directories are shown in Figure 4, where we
also show how we can compute the offset of the row to up-
date in the aggregation arrays. Since the distinct value car-
dinality for the grouping attributes is small, the mapping
directories quickly fill up and hold all input values; thus,
aggregation bears minimal synchronization overhead. After
processing all tuples, the individual aggregate value arrays
are “merged” depending on the aggregate function (e.g., for
sum, corresponding group values are added).

The scalability of multithreaded aggregation grows with
the size of the mapping directories, as lookups become more
expensive and overlap to a greater extent with input tuple
fetching. Directories, however, should not grow too large: as
the directories and aggregation arrays grow (the size of each
aggregation array being the product of distinct values of
each grouping attribute), they start “spilling” outside the
L1-cache, or even the L2-cache, so lookups and aggregate
value updates are likely to trigger cache misses. This is ag-
gravated by multiple threads sharing the lowest cache level,
so the cache capacity available per thread is reduced.

4. PERFORMANCE MODELING
In CMPs, multiple threads can work independently pro-

vided there is no synchronization overhead and their datasets
are cache-resident; this would provide linear speedups. This
is not always feasible, though, as threads will contend to
access memory-resident data. Consider N threads process-
ing a single relation: they will have to share the physical



P page size (bytes)
CL cache line size (bytes)
K input tuple cardinality
K′ staged tuple cardinality, 0 ≤ K′ ≤ K
D distinct value cardinality
T input tuple size (bytes)
T ′ staged tuple size (bytes), 1 ≤ T ′ ≤ T
L1 cost for L1-cache access (CPU cycles)
L2 cost for L2-cache access (CPU cycles)
M cost for main memory access (CPU cycles)
OUT cost for building an output tuple (CPU cycles)
N number of threads
LK cost per locking operation (CPU cycles), 0 for N = 1
TO overhead per thread (scheduling, joining etc)

Table 2: Model parameters

memory. If all need to fetch data at the same time, requests
will be serialized in the memory system [18], diminishing the
performance gains of multithreaded execution.

Consider a memory block (e.g., a hash partition). Each
thread’s operation on it can be divided in three stages:
(a) the fetching stage, where the block is requested from
main memory, (b) the processing stage, and (c) the locking
stage, where the thread interacts with the storage manager
to request a new block. Ideally, with N threads, one thread
will be fetching and N − 1 threads will be processing cache-
resident blocks. We define the multithreaded utility ratio R
of Equation 1 as the time gained by overlapping operations
through having multiple threads operate on different parts
of the input. The numerator, Cf , is the cost of fetching a
block; the denominator is the sum of the costs of fetching,
processing (Cp), and locking (Cl).

R =
Cf

Cf + Cp + Cl
(1)

Let M be the cost of a memory access. In single-threaded
execution main memory is accessed by one thread. For N
threads the memory bus is shared; in the worst case an

equivalent
`

1
N

´th
of the maximum memory throughput is

available to each core and, hence, the cost of a memory
access reaches MN . Through overlapping operations, cap-
tured by the utility ratio R, the effective memory through-
put will be greater. We define M ′, the effective memory
access cost, as shown in Equation 2. If R is less than 1

N
,

block operations will overlap so threads will face negligible
contention for accessing memory. Else, the cost will increase
depending on the multithreaded utility ratio and will ap-
proach MN as R → 1, i.e., when there is no processing
overlap among threads.

M ′ =

(
M R ≤ 1

N

MNR R > 1
N

(2)

We use this framework to estimate the speedup of mul-
tithreaded execution and give formulas for the cost of each
algorithm based on a per-memory-access model. We then
extract memory utility ratios for each algorithm of Section 3
and “plug in” these ratios to the cost formulas. Our goal
is not to have an accurate description of execution on a
per CPU-cycle granularity (which is most likely impossible
due to the complexity of modern hardware), but a coarse
characterization of the differences between single- and mul-
tithreaded execution. We therefore track the accesses of each
algorithm to each level of the memory hierarchy. We do not
account for calculations running over registers, as their exe-

cution costs are negligible compared to memory operations.
We also omit the impact of hardware prefetchers, cache asso-
ciativity, and non-blocking caches: their impact depends on
the design of each CPU and the runtime environment. The
parameters of our model are shown in Table 2; we assume a
two-level deep cache hierarchy.

4.1 Sorting
The first step of sorting is to split the input into partitions

of B bytes each and sort them using quicksort; the partitions
are merged to produce the final sorted output. To generate
a single partition to be sorted, the core needs to fetch both
the input data and the partition’s cache lines. For primary
tables we have to account for projections and for filtering
the input on (any) selection predicates, as explained in Sec-
tion 3. The size of the input that is used to fill one partition
is estimated to KT

K′T ′B. For each partition,
`
1 + KT

K′T ′

´
B

bytes will be fetched from main memory, costing M cycles
for each cache line of CL bytes. The cost of fetching a single
input partition is given by Equation 3. A generated parti-
tion of B

T ′ tuples is (at least) L2-cache-resident. To apply
quicksort, tuples need to be L1-cache-resident. Each tuple
needs to be fetched twice from the L2-cache, for reading and
writing it. In our implementation, each tuple examination
and exchange required roughly four L1-cache accesses, for a
total of B

T ′ log
`

B
T ′

´
operations. The total cost of sorting a

partition is shown in Equation 4.

Csort
f (B) =

„
1 +

KT

K′T ′

«
B

CL
M (3)

Csort
p (B) = 2

B

CL
L2 + 4

B

T ′
log

„
B

T ′

«
L1 (4)

The utility ratio of the sorting step, Rsort(B), is given by
Equation 5. We use that to derive the cost of multithreaded

execution. The entire relation will produce K′T ′

B
partitions,

so fetching the input and the partitions requires KT+K′T ′

CL
memory accesses. This will be divided across N execution
threads, with each thread having an effective memory ac-
cess cost equal to M ′, as defined by Equation 2 when R is
substituted for Rsort(B). Since sorting runs inside the cache
hierarchy (mainly in the L1-cache), the use of N threads
will most likely result in a linear speedup, so the cost for
sorting the input is reduced by a factor of N . Given all
these observations, the cost of the sorting step is given by
Equation 6.

Rsort(B) =
Csort

f (B)

Csort
f (B) + Csort

p (B)
(5)

Csort(B) =
`
KT +K′T ′

´ M ′

N · CL +
Csort

p (B)

N
(6)

The second step in sorting a relation is to merge the indi-
vidually sorted partitions. We maintain a heap of processed
tuples across merged partitions, as explained in Section 3.

The input contains K′T ′

B
partitions of B

CL
cache lines each,

so the cost of fetching the sorted partitions during the merg-
ing phase is given by Equation 7. Each tuple will be fetched
twice, since we need to insert its value in the heap, and then
output it to the appropriate position in the merged output.
However, some algorithms (e.g., merge aggregation) do not
require materializing the sorted output, so we include a fac-



tor S, set to 2 if we materialize the output, or 1 otherwise.
The processing cost is given by Equation 8, stemming from
heap processing: for each output tuple, the input tuple with
the smallest value is retrieved and the heap is re-organized.

Cmerge
f (B,S) = S

K′T ′

B
M

B

CL
= SK′T ′

M

CL
(7)

Cmerge
p (B) = 2K′ log

„
K′T ′

B

«
L1 (8)

As with partition sorting, the utility ratio of the merging
step Rmerge(B,S) is given by Equation 9. For the total cost
of the merging step we generalize the last two equations for
N threads, as shown in Equation 10. We cater for multiple
threads by substituting Rmerge(B,S) in Equation 2 and di-
viding Equation 7 by the number of threads N ; we do the
same for the heap processing cost of a partition. The cost
of the entire algorithm is the sum of Equations 6 and 10.

Rmerge(B,S) =
Cmerge

f (B,S)

Cmerge
f (B,S) + Cmerge

p (B)
(9)

Cmerge(B,S) = SK′T ′
M ′

N · CL +
Cmerge

p (B)

N
(10)

4.2 Partitioning
Recall from Section 3.1 that the general partitioning algo-

rithm is similar to sorting, with two differences: (a) quick-
sort is applied on a per-page granularity, and (b) there is
a locking overhead when directing tuples to partitions, as
multiple threads will be adding pages to them. The cost
Cpart

f (P ) of fetching a page for partitioning is given by Equa-
tion 11, i.e., similar to Equation 3 with B substituted for P ,
as each partition page is individually sorted. Pages are most
likely buffered in the L2-cache, so they need to be fetched
to the L1-cache before being sorted, and written back to the
L1-cache. The cost of processing a partition page is given
by Equation 12, i.e., similar to Equation 4, but assuming
that the page is L1-cache-resident on its second access.

Cpart
f (P ) =

„
1 +

KT

K′T ′

«
P

CL
M (11)

Cpart
p (P ) =

P

CL
(L2 + L1) + 4

P

T ′
log

„
P

T ′

«
L1 (12)

The utility ratio of partitioning, Rpart(P ), is defined in
Equation 13 where the denominator includes the locking
overhead (since the new page needs to be added to the par-
tition). The total cost of multithreaded partitioning using
N threads is given by Equation 14, where we use the ef-
fective memory access cost (obtained by Equation 2 with
R = Rpart(P )). The formula is similar to Equation 6 with
the only difference being the addition of the cost for locking

each page of each partition (a total of K′T ′

P
pages).

Rpart(P ) =
Cpart

f (P )

Cpart
f (P ) + Cpart

p (P ) + LK
(13)

Cpart(P ) =
`
KT +K′T ′

´ M ′

N · CL

+
Cpart

p (P )

N
+
K′T ′

P
LK (14)

Locking is used to synchronize the interaction with the
storage manager. Assuming the partitioning fanout is F ,
each thread will contend with the remaining N − 1 threads;
the probability of any thread requesting access to a parti-
tion is 1

F
. The probability of contention then depends on the

factor N !
F N (i.e., all permutations of threads into the prob-

ability of all threads accessing the same partition); that is
very small. It also depends on the ratio of the duration of the
lock to the duration of page processing, which also includes
data fetching and sorting ( Cl

Cf +Cp+Cl
). We therefore expect

that threads rarely need to wait for a lock to be released.
The partition pages are individually sorted, so we need

to merge them in a separate step, similarly to general sort-
ing. The difference lies in the use of the merge buffer that
replaces memory accesses with accesses to the L2-cache.
The fetching and processing costs are therefore modified as
shown in Equations 15 and 16. Recall that if the size of the

L2-cache is |L2|, the partition size will be roughly |L2|
2N

.

Cmerge
f (P, S,M) = K′T ′

M

CL
+ SK′T ′

L2

CL
(15)

Cmerge
p (P ) = 2K′ log

„
|L2|
2NP

«
L1 (16)

In Equation 15, S is 0 when the output is processed on-
the-fly (e.g., in aggregation), or 2 when the output is saved
to the merge buffer. The modified utility ratio and the merge
cost are shown in Equations 17 and 18. The total cost for
partitioning is the sum of Equations 14 and 18; M ′ is given
by Equation 2 after setting R = Rmerge(P, S).

Rmerge(P, S) =
Cmerge

f (P, S,M)

Cmerge
f (P, S,M) + Cmerge

p (P )
(17)

Cmerge(P, S) =
Cmerge

f (P, S,M ′) + Cmerge
p (P )

N
(18)

4.3 Join evaluation
All join algorithms run exclusively inside the L1-cache and

build on the staging primitives. When joining there is no
need to synchronize threads, as they operate over disjoint
inputs (see also Section 3.2). The difference between the
algorithms lies in where they “read” their data from. For
sort-merge join each partition is read from main memory,
while for hash join the input is buffered in the L2-cache.
Thus, we only need to assess the cost of fetching the input
and generating the output. Assuming two inputs A and B,
and N threads, the cost of processing the entire input will
be given by Equation 19, where σ./ is the selectivity factor
of the join predicate. For sort-merge join the input tables
are fetched from main memory, so the cost will be given by
Equation 20. For hash join, the equivalent cost of fetching
from the L2-cache is given by Equation 21. To those costs
we need to add the thread scheduling overhead, equal to
N · TO in all cases.

Cjoin
p =

K′
AK

′
Bσ./

N
OUT (19)

Cmerge-join
f =

`
K′

AT
′
A +K′

BT
′
B

´ M

N · CL (20)

Cpartition-join
f =

`
K′

AT
′
A +K′

BT
′
B

´ L2

N · CL (21)



System Dell Precision T5400
Processor Intel Xeon E5420
Number of cores 4
Frequency 2.5GHz
Cache line size 64B
I1-cache 32KB ×4
D1-cache 32KB ×4
L2-cache 6MB ×2
L1-cache access latency 3 cycles
L1-cache miss latency (sequential) 9 cycles
L1-cache miss latency (random) 14 cycles
L2-cache miss latency (sequential) 48 cycles
L2-cache miss latency (random) 85-250 cycles

RAM type
4x1GB Fully Buffered
DIMM DDR2 667MHz

Table 3: Testbed specifications

The total cost of sort-merge join will be equal to the cost
of sorting both inputs (Equations 6 and 10 with S set to
2), plus fetching the blocks of both inputs from main mem-
ory (Equation 20), plus the cost of generating the output
(Equation 19), plus the cost of thread scheduling (N · TO).
Similarly, one can extract the cost of hash join evaluation:
it is equal to the cost of partitioning the input (Equation 14
and Equation 18 with S set to 3 to include each input’s con-
tribution to Equation 21 as well), plus the output generation
cost (Equation 19), plus the thread scheduling overhead.

4.4 Aggregation
Recall from Section 3.3 that aggregation is evaluated on-

the-fly, without restructuring the input. For merge and hash
aggregation this means that we do not materialize the out-
put of the merging phase; rather, we use it directly to update
the aggregate values. The aggregation cost is given by the
data staging cost equations: we set S to 1 for merge aggre-
gation and to 0 for hash aggregation. We also include the
scheduling cost N · TO for multithreaded execution.

Map aggregation makes a single pass over the input with
no intermediate staging. Memory accesses overlap with lookups
on the mapping directories, as the latter are cache-resident.
Assuming G grouping attributes, A aggregation functions,
and binary search for mapping directory lookups, input fetch-
ing and processing are given by Equations 22 and 23 respec-
tively; Di is the distinct value cardinality of group i.

Cmap
f =

KT

CL
M (22)

Cmap
p =

 
GX

i=0

(log (Di)L1) +A · L2

!
K′ (23)

The first term in Equation 23 is the cost of binary search
in each directory; the second term is the cost of updating
the aggregation arrays. The assumption is that the mapping
directories fit in the L1-cache, while the (possibly) larger
aggregation arrays are evicted to the L2-cache. We can es-
timate the map aggregation cost as shown in Equation 25,
where M ′ is given by using the utility ratio of Equation 24.

Rmap =
Cmap

f

Cmap
f + Cmap

p
(24)

Cmap =
KT

N · CLM
′ +

Cmap
p

N
(25)

5. EXPERIMENTAL STUDY

To verify the efficiency of our proposals and the correct-
ness of the analytical model, we implemented our algorithms
in C and conducted an extensive experimental study. The
hardware platform we used was a Dell Precision T5400 work-
station, with an Intel Xeon E5420 quad-core processor, clocked
at 2.5GHz with 4GB of physical memory running GNU/Linux
(64-bit version, kernel 2.6.26). The C code was compiled
with the GNU gcc compiler (version 4.3.2) using the -O2

compilation flag. We used the pthread thread library. De-
tails about the testbed are shown in Table 3. The cache
latencies were measured with the RightMark Memory Anal-
yser [22].

We used tables of various schemata and cardinalities and
stored them using NSM. Primary tables were cached in the
buffer pool of a typical storage manager. All intermediate
results (e.g., partitions) were saved as temporary tables, also
controlled by the storage manager.We hard-coded all bench-
mark queries to reduce instruction-level overhead using the
holistic query evaluation model [14]. This was beneficial to
single-threaded performance, as multithreading can exploit
the instruction caching and issuing mechanisms of multiple
cores. We expect iterator-based implementations of our al-
gorithms (e.g., based on the exchange operator of [9]) to
result in higher speedups but slower response times. We ran
each query ten times in isolation and report the average re-
sponse times; the deviation was less than 3% in all cases. We
also report the speedup when moving from single-threaded
to multithreaded execution.

Measured speedups were compared with the ones esti-
mated by the analytical model. To apply the model, we
set N to 4, as our reference CPU supports one thread per
core, L1 to 3, L2 to 14 and M to 100, as accesses are both
sequential and random. We calibrated the locking cost LK
to 5M and TO to 2.5% of total execution time. We set
OUT to zero and did not generate results (unless explicitly
stated), to isolate the multithreaded performance of the al-
gorithms; result generation runs inside the L1-cache for each
thread and thus inflates scalability.

5.1 Aggregation
We measured the impact of input tuple size by using a

table of 1M tuples (K = K′) and varying the tuple size be-
tween 4 and 256 bytes (T = T ′ ∈ [4, 256]), using one group-
ing attribute with 1,000 distinct values (D). The estimated
and measured costs for merge, hash, and map aggregation,
as well as their comparative performance when using four
threads, are shown in Figure 5. When R becomes greater
than 1

N
we expect the effective memory access cost M ′ to

start increasing. This is verified experimentally, as the slope
significantly grows when R exceeds this threshold. The es-
timate for hash aggregation is more accurate than that for
merge aggregation. The fluctuation in the latter is due to
cache line alignment effects, which are not included in our
model. In terms of algorithm performance, the measured
speedup is over 3 for small tuple sizes. It degrades for wider
tuples, as the cores will spend more time fetching data from
memory. This is more intensive in hash than merge aggre-
gation, as the computational load for sorting and merging
larger blocks keeps the cores busy to a higher extent. For
map aggregation, the mapping directory has enough entries
to make the lookup cost comparable to the cost of fetch-
ing small tuples. As the tuple size grows the fetching cost
scales and dominates, resulting in poorer performance. The



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50  100  150  200  250

S
pe

ed
up

Tuple size (bytes)

1/N
Rpart

Rmerge
Estimated
Measured

(a) Hash aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50  100  150  200  250

S
pe

ed
up

Tuple size (bytes)

1/N
Rsort

Rmerge
Estimated
Measured

(b) Merge aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50  100  150  200  250

S
pe

ed
up

Tuple size (bytes)

1/N
Rmap

Estimated
Measured

(c) Map aggregation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50  100  150  200  250

T
im

e 
(s

)

Tuple size (bytes)

Hash
Merge

Map

(d) Multithreaded performance

Figure 5: Impact of tuple size on aggregation

deviation in Figure 5(c) for small tuple sizes is due to over-
estimating the cost of updating the aggregation arrays: it
varied between L1 and L2, but is set to L2 in Equation 25.
As shown in Figure 5(d), merge and hash aggregation have
comparable performance, as they incur a similar number of
accesses to main memory. Map aggregation needs no in-
put staging and is thus faster and less sensitive to changes
in tuple size, for the given (small) number of values of the
grouping attribute.

We then measured the impact of input cardinality after
applying selections and projections. We used a table of
K=10M tuples of T=72 bytes each and varied the selectivity
between 0.1 and 1; each tuple after staging was 20 bytes (T ′);
D was set to 1,000 again. The results are shown in Figure 6.
The performance is accurately modeled, with estimated and
measured curves for all aggregation algorithms being close
and following the same trends. For a small selectivity, the
cost of fetching the primary table is higher than sorting the
filtered data. As selectivity grows the speedup increases and
converges to a maximum value, reached when R is less than
1
N

. Note that the merge-based implementation gives higher
speedups, as it better exploits the computational power of
multiple cores. As for comparative multithreaded perfor-
mance (Figure 6(d)), hash aggregation outperforms merge
aggregation by a factor proportional to selectivity. Map ag-
gregation widely outperforms the other algorithms and is
less sensitive to selectivity as it does not build intermediate
partitions.

The number of distinct values of the grouping attribute(s)
has a detrimental effect on the performance of map aggre-

gation, as it affects the size of the directories and the ag-
gregation arrays. As the grouping cardinality increases, the
auxiliary data structures are evicted to lower cache levels.
This penalizes performance, as there is a significant increase
in cache misses and scalability, as all threads compete for
accessing memory to a greater extent. This is shown in Fig-
ure 7 for an aggregation query on 10M tuples of 72 bytes
each, using one grouping attribute of varying cardinality D
and four sum functions. In the first two cases there is no
result generation; in the third case we show the impact of
result generation on scalability. Merge and hash aggrega-
tion are moderately affected by the cardinality of the group-
ing attribute, their difference being the number of iterations
during quicksort runs. Map aggregation is 2.5 times faster
for small cardinalities but its performance degrades fast, in-
dicating the inflated cost for accesses to the L2-cache and
the main memory. In terms of scalability (Figure 7(b)),
hash and memory aggregation exhibit high speedups, grow-
ing with cardinality. Map aggregation has a low speedup
for small cardinalities, as the directory lookup cost is too
small to hide memory latencies. Then, speedups grow with
cardinality and start dropping again, as the auxiliary data
structures are evicted to the L2-cache or outside it. Output
generation provides sufficient computational load to mask
memory accesses (Figure 7(c)), with all algorithms exhibit-
ing speedups over 3 for considerable result sizes.

5.2 Join evaluation
We next studied multithreaded join evaluation for varying

input tuple size, input cardinality, and join selectivity. We
joined two tables of 1M tuples each. The outer table’s tuples



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rsort

Rmerge
Estimated
Measured

(a) Hash aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rsort

Rmerge
Estimated
Measured

(b) Merge aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rmap

Estimated
Measured

(c) Map aggregation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(s

)

Staged input cardinality (Millions)

Hash
Merge

Map

(d) Multithreaded performance

Figure 6: Impact of selectivity on aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6

T
im

e 
(s

)

log10(D)

Map
Merge
Hash

(a) Multithreaded performance

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1  2  3  4  5  6

S
pe

ed
up

log10(D)

Map
Merge
Hash

(b) Measured speedup

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1  2  3  4  5  6

S
pe

ed
up

log10(D)

Map
Merge
Hash

(c) Speedup with output generation

Figure 7: Impact of group cardinality

were 72 bytes long; the tuple size after staging was 20 bytes.
The inner table’s tuple size varied between 20 and 300 bytes.
Each outer tuple matched with 10 inner tuples. The results
shown in Figures 8(a) and 9(a) exhibit trends similar to the
ones of aggregation (Figure 5): input staging accounted for
90% of execution time (omitting result generation) and is
the same process for both aggregation and join evaluation.
Hash join performs better; the use of merge buffers increases
cache locality and reduces the cost of memory operations.
Still, merge join results in higher speedups due to the higher
computational cost of sorting larger blocks.

For cardinality experiments we used two tables with tu-
ple sizes of 72 bytes, reduced to 20 bytes after staging; each
outer tuple matched with 10 inner ones. The outer table’s
cardinality was 1M and the inner’s was 10M, but we filtered
the inner table with a predicate of selectivity ranging be-
tween 0.1 and 1. The results of Figures 8(b) and 9(b) are

similar to those of Figure 6, with speedups increasing and
converging to a maximum value. In terms of join predicate
selectivity, we joined two tables of 1M tuples, 72 bytes each,
but staged to 20 bytes. We varied the number of matching
inner tuples per outer tuple to 1, 4, 10, 100, and 1,000. As
join selectivity grows, the speedup is close to linear for both
algorithms, as shown in Figures 8(c) and 9(c). This is due to
join predicate evaluation effectively “backtracking” between
multiple matches. Processing runs inside the L1-cache, re-
ducing the frequency of memory accesses and resulting in
high speedups.

5.3 Pipelined operators
We now move on to a query combining two joins and an

aggregation. We used three tables with 1M tuples of 72
bytes each. In the first join, each outer tuple matched with
4 inner ones; in the second join the number of matching



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50  100  150  200  250  300

T
im

e 
(s

)

Size (bytes)

Hash
Merge

(a) Input tuple size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(s

)

Staged input cardinality (Millions)

Hash
Merge

(b) Input selectivity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

T
im

e 
(s

)

log10(|Matching tuples|)

Hash
Merge

(c) Join predicate selectivity

Figure 8: Multithreaded performance of join evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50  100  150  200  250  300

S
pe

ed
up

Size (bytes)

Hash
Merge

(a) Input tuple size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

S
pe

ed
up

Staged input cardinality (Millions)

Hash
Merge

(b) Input selectivity

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  0.5  1  1.5  2  2.5  3

S
pe

ed
up

log10(|Matching tuples|)

Hash
Merge

(c) Join predicate selectivity

Figure 9: Measured speedup for join evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Hash,Hash,Map Merge,Merge,Map Hash,Hash,Hash Merge,Merge,Merge

Ti
m
e 
(s
)

First Join Second Join Aggregation

D = 100000D = 1000

(a) Multithreaded performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Hash,Hash,Map Merge,Merge,Map Hash,Hash,Hash Merge,Merge,Merge

Sp
ee
du

p

First Join Second Join Aggregation Total

D = 100000D = 1000

(b) Measured speedup

Figure 10: Multiple operators

inner tuples was 10. The two joins produce 4M and 40M
tuples respectively. We used both merge and hash join. The
result was sum-aggregated over one grouping attribute with
either 1,000 or 100,000 distinct values. In the first case we
used map aggregation. In the second case, the grouping
attribute was the same as the join attribute of the second
join, to measure the impact of sorted runs. The results are
shown in Figure 10; the labels indicate the algorithms used
for each operator.

Hash join is faster than merge join, verifying once again
that the use of an L2-cache buffer for merging pays back. For
aggregation, when the number of values for the grouping at-
tribute is 1,000, the use of map aggregation is very efficient:
it needs 0.55s for 40M tuples, resulting in a throughput of
72.6M tuples/s. In terms of scalability, the reduction in tu-
ple size allows all operators apart from the first to work on
small tuples and, hence, they do not fetch data not needed
for processing. The observed speedups are over 3 and, for
hash join and map aggregation, close to linear.

When the number of groups increases to 100,000, hash and

merge aggregation become more efficient as map aggregation
exhibits excessive cache misses. We use either all-hash or
all-merge algorithms. The cost of hash aggregation is twice
that of map aggregation in the previous case (i.e., when
D = 1,000). However, since the output of the second join is
already sorted on the grouping attribute, merge aggregation
does not need intermediate partitions, but is evaluated in a
single pass of the join result. A direct comparison of map
and merge aggregation shows that the latter needs only a
small portion of the time needed by the former, as there
are no directory lookups and updates of aggregate arrays.
However, the speedup of merge aggregation is limited as
there is no computational load to effectively mask the cost
of memory accesses.

6. RELATED WORK
Simultaneous multithreading (SMT), a form of TLP, was

explored in [24]: a helper thread was used to aggressively
prefetch data to be used by the main thread. This tech-
nique is not applicable in multicores with no in-core support



for TLP, as the helper thread will fetch data to a different
L1-cache than the one used by the main thread. The authors
of [5] examined inter-operator communication and proposed
using chunks of the output as buffers for each thread. We use
a separate output buffer per thread to avoid synchronization
and a similar approach for partitioning (see also [4]), since
each thread has exclusive access to one partition page. As we
sort pages during partitioning the processing time per page
increases, and thread contention for locking is minimized.

In [3], the authors tested and modeled the use of private
and/or shared hash tables for aggregation on CMPs. Their
approach is tailored to processors supporting multiple (four
for the employed CPU) threads inside each core; it is not
clear how it can efficiently be ported to architectures with
no in-core support for TLP. The combination of SIMD in-
structions with multithreading on multicores was studied in
the context of mergesort [2] and join evaluation [13]. This
approach proves highly efficient when processing vertically
partitioned data, but it cannot be directly applied to query
engines processing NSM-based pages. Our framework is in-
dependent of the storage layout.

In [17], the authors gave an analytical model for single-
threaded main-memory query execution. The model cap-
tured the cost of stalls, e.g., cache and TLB misses, ac-
cording to the access pattern. Our model does not distin-
guish between sequential and random access patterns but
accounts for accesses to the L1-cache, as CPUs do not have
enough memory ports to serve successive read and write op-
erations. Finally, [12] tackled work sharing in CMPs and
modeled the performance of concurrently processed, staged
queries; [21] investigated scheduling of multiple queries for
scan sharing; and [15] suggested the use of page coloring to
prevent cache thrashing when concurrently executing multi-
ple queries. These are complementary to our work: we focus
on intra-operator parallelism and model the contention for
shared hardware resources.

7. CONCLUSIONS AND FUTURE WORK
We studied multithreaded query processing on chip multi-

processors. By identifying main memory accesses and thread
synchronization as the performance bottlenecks, we pro-
vided a uniform framework for implementing query process-
ing algorithms that: (a) reduces contention for hardware
resources, and (b) bears minimal synchronization overhead.
We analytically modeled the performance and scalability of
each algorithm to statically estimate the benefit of multi-
threaded execution. We implemented and experimentally
validated our proposals. The results verify the correctness
of our model and the efficiency of our algorithms, which, in
some cases, achieve almost linear speedups.

8. REFERENCES
[1] A. Ailamaki et al. DBMSs on a Modern Processor:

Where Does Time Go? In The VLDB Journal, 1999.

[2] J. Chhugani et al. Efficient implementation of sorting
on multi-core SIMD CPU architecture. PVLDB,
1(2):1313–1324, 2008.

[3] J. Cieslewicz and K. A. Ross. Adaptive Aggregation
on Chip Multiprocessors. In VLDB, 2007.

[4] J. Cieslewicz and K. A. Ross. Data partitioning on
chip multiprocessors. In DaMoN, pages 25–34, 2008.

[5] J. Cieslewicz, K. A. Ross, and I. Giannakakis. Parallel
buffers for chip multiprocessors. In DaMoN, 2007.

[6] J. Dean and S. Ghemawat. MapReduce: Simpliied
Data Processing on Large Clusters. In OSDI, 2004.

[7] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[8] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2), 1993.

[9] G. Graefe. Volcano – An Extensible and Parallel
Query Evaluation System. IEEE Trans. on Knowl.
and Data Eng., 6(1):120–135, 1994.

[10] N. Hardavellas et al. Database servers on chip
multiprocessors: Limitations and opportunities. In
CIDR, pages 79–87, 2007.

[11] J. Hennessy and D. Patterson. Computer architecture:
a quantitative approach. Morgan Kaumann Publishers
Inc., 4 edition, 2006.

[12] R. Johnson et al. To Share or Not To Share? In
VLDB, 2007.

[13] C. Kim et al. Sort vs. Hash Revisited: Fast Join
Implementation on Modern Multi-Core CPUs.
PVLDB, 2(2):1378–1389, 2009.

[14] K. Krikellas, S. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, 2010.

[15] R. Lee et al. MCC-DB: Minimizing Cache Conflicts in
Multi-core Processors for Databases. PVLDB,
2(1):373–384, 2009.

[16] S. Manegold, P. A. Boncz, and M. L. Kersten. What
happens during a Join? - Dissecting CPU and
Memory Optimization Effects. In VLDB, 2000.

[17] S. Manegold et al. Generic Database Cost Models for
Hierarchical Memory Systems. In VLDB, 2002.

[18] T. Moscibroda and O. Mutlu. Memory performance
attacks: denial of memory service in multi-core
systems. In SS, 2007.

[19] C. Nyberg et al. AlphaSort: A Cache-Sensitive
Parallel External Sort. VLDB J., 4(4), 1995.

[20] OProfile. A System Profiler for Linux, 2008.
http://oprofile.sourceforge.net/.

[21] L. Qiao et al. Main-memory scan sharing for
multi-core CPUs. Proc. VLDB Endow., 2008.

[22] RightMark. RightMark Memory Analyser, 2008.
http://cpu.rightmark.org/products/rmma.shtml.

[23] Sandia National Laboratories. More chip cores can
mean slower supercomputing, Sandia simulation
shows, 2009. http://www.sandia.gov/news/.

[24] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah.
Improving Database Performance on Simultaneous
Multithreading Processors. In VLDB, 2005.


