

Edinburgh Research Explorer

A Peer-to-Peer Architecture for e-Science

Citation for published version:
Viglas, S 2006, 'A Peer-to-Peer Architecture for e-Science'. in UK e-Science All Hands Meeting.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
UK e-Science All Hands Meeting

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/a-peertopeer-architecture-for-escience(3ef85f1c-174a-44bd-a218-063a39927fd8).html

A Peer-to-Peer Architecture for e-Science
Stratis D. Viglas

School of Informatics, University of Edinburgh, UK
sviglas@inf.ed.ac.uk

Abstract

One of the key issues in supporting e-Science is managing data in distributed, flexible, scalable and autonomous ways.
This paper proposes an architecture based on Peer-to-Peer systems that can be used to facilitate large-scale distributed data
management. It identifies the important problems that need to be addressed and presents possible solutions, along with their
expected advantages. These ideas, we believe, are helpful in extending the discussion of alternative approaches of supporting
the multiple facets of e-Science.

1 Introduction

Research organisations produce data at ever-increasing
rates. Central management is impossible for a variety of
reasons, including, but not limited to, the sheer volume of
data, their rate of change, and their geographical distribu-
tion. This means that flexible and strictly distributed ar-
chitectures need to be in place. The purpose of this paper
is to present such an architecture with an increased focus
on decentralised, scalable and reliable data management.
That is not to say that high performance issues are to be
discarded; rather, by focusing on reliable data management
we can “free” the applications built on top of the data man-
agement layer to concentrate on application-specific per-
formance issues without having to address management as-
pects as well.
Large-scale decentralisation. Accumulating information
in central structures means that central points of failure
are created, and fault-tolerance is decreased. The situation
can be alleviated by employing overlay networks (e.g., [17,
18, 19]) but, even in those cases, targeted attacks can still
take place, while secondary maintenance protocols need
to be continuously executed to keep the overlay structure
updated. We would like the system not to have any rigidly
imposed structure, but be fully adaptable.
Increased autonomy. In a decentralised system, nodes
join and leave at will. There are no established “contracts”
as to how long a node should be in the system, or of repli-
cation of the data available at a single node. The node it-
self manages its behaviour, along with access to the data it
serves. This poses questions as to what connections the
node establishes and what protocols are to be executed
upon node arrivals and departures.
Security. Naturally, there is need for security, especially
if there is no central management authority. We focus on
user-level data access, so as not to (i) compromise data in-
tegrity, or (ii) allow access to users who the nodes of the
system do not want to grant access to. Both these aspects
are in direct accordance to the autonomy notion previ-
ously described.
Efficient data retrieval and manipulation. Performance
in a decentralised system is of paramount importance; in
our setting, performance means response time. Current
research has addressed the problem by either (i) building

high-bandwidth connections and relying on the speed of
those connections to account for rapid data exchange, or
(ii) building overlay networks and measuring performance
in terms of the number of routing hops necessary to route
data retrieval requests. Both metrics provide localised solu-
tions to a truly global problem in a decentralised data man-
agement system. For instance, rapid data retrieval does not
account for what data manipulation takes place over said
data; or, the number of routing hops to locate data does
not take into account data volume, or network latency.
Being agnostic to the rest of the computing environment
is not helpful in a decentralised data management scenario,
especially one as intricate and collaborative as e-Science.

We aim to address all these issues by developing cus-
tomisable middleware between the nodes comprising the
system. Participating nodes will need only implement a
specific interface, therefore being independent of any ties
to operating systems or programming environments. In
light of the needs for autonomy and decentralisation, we
propose a Peer-to-Peer (P2P) architecture. In the following
sections, we shall present such an architecture, focus on a
subset of the problems at hand, and present possible solu-
tions.

2 System Overview

The general overview of the system is shown in Figure 1.
The main assumptions are: (i) Each peer exports its data
in XML. This imposes no restriction on the peer’s native
data format; the only requirement is that an XML view of
it is exported. (ii) Each new peer is introduced to the sys-
tem by following a “hand-shake” protocol with an exist-
ing peer. (iii) Each peer maintains connections to other
peers, forming its routing table that contains both seman-
tic and structural links. (iv) While present in the system,
the peer’s routing table evolves to account for peer arrivals
or departures. (v) To process queries, a peer first identifies
the peers relevant to the query. The query is then rewrit-
ten in ways that can be processed by the relevant peers.
(vi) A departing peer executes a specialised exit protocol.

2.1 Protocols

The functionality of the system can be summarised in
three main protocols. The implementation of these proto-
cols dictates additional building blocks of the architecture.

Peer k

Peer 1
Peer 2

Peer n

Introduction
of a new peer
to the system Communications module

System peer

Index
manager

Security
manager

Query re-
formulator

Query
router

Data server

Data exported
in XML

Figure 1: System overview and general architecture

Entrance protocol. This is the “bootstrapping” sequence
executed by a peer joining the system. The requirement is
that a joining peer knows of another peer that is already
part of the system. Consider, e.g., peer Pn joining the
system and being aware of peer Po . There are two steps:
(i) exporting of Pn ’s data and indexing of its data at Po ,
and (ii) exchange of information between the two peers
concerning further nodes. The first step introduces Pn to
the system and makes it accessible by peers known to Po ,
i.e., Po is now capable of delegating queries to Pn . The
second step accounts for the reverse direction, i.e., for Pn
to be able to route queries to Po ; Po becomes part of Pn ’s
routing table and vice-versa. These steps can be recursively
applied: Po can forward Pn ’s credentials to peers it knows
about and it can forward the credentials of those peers to
Pn .
Querying protocol. Each peer should be in a position to
retrieve data served by any other peer in the system. The
querying protocol undertakes the following: (i) identify-
ing the peers relevant to a query; (ii) translating the query
to a destination peer’s exported schema; (iii) forwarding
the query to the destination peer and reporting the results
back to the user; and (iv) while answering the query, up-
date the originating peer’s routing table with newly dis-
covered information. These steps are not executed only at
a single peer. Since multiple peers may be useful in answer-
ing a single query, the steps are recursively applied by all
participating nodes. This forms the basis of data discov-
ery and query routing, two salient features in decentralised
indexing and query evaluation.
Exit protocol. On exiting, a peer disassociates itself from
peers it knows about. Assuming peer Pn leaves the net-
work, during the exit protocol, it: (i) propagates informa-
tion it has gathered during its stay in the system to peers
it knows about, so as for any associations it has identified
to “live on,” and (ii) makes its data inaccessible to the peers
it is connected to, so as to bring the system to a consistent
state. As before, the first step can be recursively applied.

2.2 Modules

To realise the previous protocols, each peer has two mod-
ules: (i) a data server, responsible for exporting data to XML
and locally evaluating queries, and (ii) a communication

module, providing access to remote peers of the system
(see also Figure 1). The responsibilities of the communica-
tion module are delegated to four entities, described next.
Index manager. The index manager is responsible
for maintaining data connections between related peers.
These connections are either (i) semantic, representing
related concepts (e.g., peers that maintain information
about related scientific data may be aware of each other),
or (ii) structural, used when reformulating and routing
queries to relevant peers. Semantic connections are stored
as mappings, while structural ones are stored as communi-
cation links.
Security manager. Autonomy is one of the important as-
pects of the architecture, i.e., a peer should be responsible
for both serving data, as well as controlling access to it.
This means that security policies need to be in place. In
the spirit of decentralisation, this information needs to be
completely distributed throughout the system.
Query reformulator. The query reformulator is respon-
sible for rewriting queries before forwarding them to re-
mote peers. It “translates” the query at hand to use terms
that are known to the destination peers. For instance, if a
query is to be routed to institutions using different words
for the same term, the query reformulator consults local
mappings and forwards the query rewritten in ways that
can be processed by the remote peers.
Query router. After relevant peers have been identified
and the queries have been reformulated, the question is
how should these queries be evaluated. Query perfor-
mance characterises system performance, so it is crucial to
be addressed in an efficient manner. In a dynamic and de-
centralised system, local optimisation decisions may prove
quite limiting. We propose query evaluation through rout-
ing; the entity routed can either be a part of the query, or
a partial result of the query, or even the entire query if this
is deemed the best evaluation strategy.

3 Research Issues

We now turn to the core research agenda of our proposal,
decomposed into four major categories: indexing, security,
query reformulation and query evaluation.

3.1 Decentralised Indexing

Each peer autonomously manages and extends its own
routing table to be used during query evaluation. The gen-
eral form of this index structure is shown in Figure 2a.
A local routing table is conceptually a three-column rela-
tional table. The first column is a destination peer, the sec-
ond a local term and the third column a remote term (i.e.,
a part of the schema exported by the destination peer). As
shown in Figure 2a, a peer’s routing table contains both
semantic and structural information. Any entry of the
routing table contains structural information; semantic in-
formation comes into play by maintaining term mappings
wherever that is applicable. For instance, the first row in
Figure 2a’s routing table means that local term X maps to
remote term A. Note that the same peer (e.g., Peer 1) may
appear multiple times in the routing table. In addition,
the same local term may be mapped to multiple remote

terms at different peers (e.g., Peers 1 and i in Figure 2a).
Finally, the same remote term may be served by multiple
peers (e.g., for Peers 1 and n in Figure 2a). This give us
substantial flexibility in identifying relevant peers or even
choosing between alternative peers serving related infor-
mation.

The questions that arise have to do with forming and
maintaining routing tables: (i) How much information is
exchanged whenever a new peer joins the network? Alter-
natives include the new peer “downloading” the existing
peer’s entire routing table, or a part of it. (ii) How is the
routing table updated as peers join and leave the network?
One option is to “piggy-back” the routing table updates
when accessing remote peers for the purposes of querying.
Another option is to have a maintenance protocol being
executed periodically. (iii) How can the routing table be
further utilised during query evaluation? In particular, can
the maintenance protocol provide performance guarantees
about the connections stored in the routing table (e.g., la-
tency, probability of the connection being up to date etc.).
Decentralised indexing allows for a great deal of research
to be undertaken in the area.

3.2 Security

Data management means that, in addition to serving, peers
manage access to the served data. The question that
emerges is one of security: how can peers control which
peers access their data? One solution is for each peer to re-
quest each other peer to register with it. However, this
solution will not scale: it goes against the idea of com-
plete decentralisation (as it means that each peer is aware
of all peers in the system), while it also inhibits the mainte-
nance protocols described earlier (as even the slightest lo-
cal changes need to be globally transmitted). Additionally,
we would like all forbidden requests to fail fast, i.e., to fail
as soon as possible – ideally at the originating peer. This
means that each peer not only keeps track of who has ac-
cess to its data, it also maintains information about what
data it has access to.

The solution we propose is based on XML security
views [8]. Each peer exports different views of its data to
different peers, depending on the peer it is communicating
with. An example is shown in Figure 2b where Peer k, ex-
ports different views to Peers i and j . The system adheres
to the fail fast principle: since neither Peer i nor Peer j are
aware of the data they cannot access, they cannot request
it.

3.3 Query Reformulation

Query reformulation can be thought of as the query com-
pilation step in a decentralised system. During query re-
formulation the system executes a resource discovery pro-
tocol, which aids in: (i) identifying peers that may contain
relevant terms; (ii) translating the query to terms that are
understandable by other peers; and (iii) ensuring that each
requesting peer has access to a particular term by consult-
ing security policies.

The three steps mentioned above are iteratively exe-
cuted. For instance, in Figure 2a, if a query about term

X is received, the local peer knows that in addition to
accessing its local data, it needs to forward an appropri-
ate query to Peer 1. The query is formulated by trans-
lating term X in the query to term A for Peer 1 to be
able to handle it. In addition, the same procedure can
be undertaken once the reformulated query reaches Peer
1 and for term A. The outcome of this process is a path
(P1,Q1)/(P2,Q2)/ . . ./(Pn ,Qn) with the semantics that at
each peer Pi the corresponding reformulated query Qi
should be evaluated.

The path may indeed contain duplicate peers, i.e., the
same peer may have to be visited multiple times in pro-
cessing a query. The most efficient way of accessing such
peers is an issue of query optimisation and evaluation and
is the purpose of the query router module.

3.4 Query Evaluation

An integral part of query evaluation is query optimisa-
tion. Already a hard problem in centralised environments,
the situation is aggravated in decentralised ones as the like-
lihood of optimisation-time assumptions holding during
evaluation-time is even lower. We propose decomposing
queries into a query algebra and reducing query evalua-
tion to a routing problem. We shall use two basic rout-
ing/evaluation strategies, shown in Figures 2c and 2d. The
first is parallel evaluation: data requests are forwarded to
peers, which then upload their data to the requesting peer
that locally evaluates the query. The alternative is serial
evaluation: a route is established and all peers are visited
serially until the complete result is produced.

The two approaches can be better explained through
an example. Consider a relational query of the form
R1.a1 = R2.a2 = . . . = Rn .an posed at peer Pk where each
Ri resides on a different peer Pi of the system. The parallel
strategy would send requests for each Ri to be transmitted
to Pk and for Pk to locally evaluate the query. The serial
strategy instructs that the query be sent to P1, the peer re-
sponsible for R1, which then rewrites the query1 and for-
wards it to P2, the next peer in the sequence. The process
is repeated until Pn is reached, which then sends the result
to the originating peer Pk .

Note that the original query can be rewritten in many
ways. In the previous example the original query can be
decomposed into numerous blocks2; each block can be
evaluated in parallel or serially. Each peer makes local
routing, and, hence, optimisation decisions. Finally, note
that a single peer may need to be visited multiple times. In
such cases, care needs to be taken so that the number of
times a single peer is visited is minimised.

To summarise, we envision query evaluation through
query routing to be a continuous cycle of (i) mapping
the query to a query algebra and forming query blocks,
(ii) performing local optimisation to identify whether par-
allel or serial evaluation is more beneficial for a particular
block, (iii) forwarding a query block to the peers storing
data relevant to the block, and (iv) rewriting the query to

1A simple, but most likely inefficient, rewrite would be to substitute
values in R1.a1 with constants.

2∑n
i=1 i !
�n

i

�

=
∑n

i=1
n!
(n−i)! to be exact.

Peer Local Remote
1 X A
1 B
2 Y C

.
i X F
j Z C

.
n B

(a) Indexing

Peer i

View exported
to Peer i

Peer j

View exported
to Peer j

Peer k

(b) Security views

Peer k

Peer 1

Peer 2

. . .

Peer n

(c) Parallel evaluation

Peer k

Peer 1

Peer 2

. . .

Peer n

(d) Serial evaluation

Figure 2: Various aspects of the proposed architecture

adjust for the partially computed result. The metrics to
be employed in such an evaluation paradigm stem from
three directions: (i) number of routing steps needed to
evaluate the query; (ii) number of times a single peer is
visited in evaluating the query; and (iii) raw size of data
exchanged. Optimising for different dimensions, or com-
bining all three metrics into a single one presents a very
interesting multi-objective optimisation problem.
4 Related Work

There has been a host of work on P2P overlay networks
and decentralised data structures in general (e.g., [1, 3, 4,
6, 10, 16, 17, 18, 19]). These aim to solve the problem of
efficiently identifying the peers of a system responsible for
some particular data item by implementing a dictionary
interface. In our case, the objective is to have highly un-
structured networks that evolve as peers join and leave.

Another large area of work is concerned with dis-
tributed catalogs and covers peer data management sys-
tems (e.g., [13, 20, 21]) and semantic overlay networks
(e.g., [5, 11]). In terms of query evaluation, there has
been plenty of work on parallel databases (see e.g., [7])
and distributed query processing (see e.g., [14]). These ap-
proaches address environments of rigid structure and high
predictability, while later studies have focused on the un-
predictable behaviour of P2P systems (e.g., [2, 9, 12]). All
these focus on specific sub-problems without proposing a
single, modular framework that is conducive to e-Science.

Finally, though e-Science oriented, existing approaches
like the OGSA-DAI framework [15] address the problems
at highly structured environments, without addressing in-
termittent peer behaviour or differing security policies.
Rather, they focus on data integration and data delivery
over Grid-like environments. It is certainly interesting to
explore collaboration between the two approaches.
5 Conclusions

We have presented an architecture for building scalable
data management systems over Web Services. We have
focused on presenting the important problems in such a
framework, along with solutions that appear to be viable
at this stage. We have started implementing a prototype of
the architecture with encouraging results. These results,
we believe, are good initial steps in verifying the viability
of our approach.

References

[1] K. Aberer. P-Grid: A Self-organizing Access Structure for
P2P Information Systems. In CoopIS, 2001.

[2] P. Boncz and C. Treijtel. AmbientDB: Relational Query
Processing in a P2P Network. In DBISP2P, 2003.

[3] I. Clarke et al. Freenet: A Distributed Anonymous In-
formation Storage and Retrieval System. Lecture Notes in
Computer Science, 2009, 2001.

[4] A. Crainiceanu et al. Querying Peer-to-Peer Networks Us-
ing P-Trees. In WebDB, 2004.

[5] A. Crespo and H. Garcia-Molina. Semantic Overlay Net-
works for P2P Systems. Technical report, Computer Sci-
ence Department, Stanford University, 2003.

[6] A. Datta et al. Range queries in trie-structured overlays. In
IEEE International Conference on Peer-to-Peer Computing,
2005.

[7] D. J. DeWitt and J. Gray. Parallel database systems: The
future of high performance database systems. Commun.
ACM, 35(6), 1992.

[8] W. Fan et al. Secure XML Querying with Security Views.
In SIGMOD, 2004.

[9] L. Galanis et al. Processing Queries in a Large P2P System.
In CAiSE, 2003.

[10] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
Balancing of Range-Partitioned Data with Applications to
Peer-to-Peer Systems. In VLDB, 2004.

[11] A. Halevy et al. Piazza: Data management infrastructure
for semantic web applications. In WWW, 2003.

[12] R. Huebsch et al. Querying the Internet with PIER. In
VLDB, 2003.

[13] G. Karvounarakis et al. RQL: A Declarative Query Lan-
guage for RDF. In WWW, 2002.

[14] D. Kossmann. The State of the Art in Distributed Query
Processing. ACM Comp. Surveys, 32(4):422–469, 2000.

[15] OGSA-DAI. http://www.ogsadai.org.uk.
[16] S. Ramabhadran et al. Brief announcement: Prefix hash

tree. In PODC, 2004.
[17] S. Ratnasamy et al. A Scalable Content-Addressable Net-

work. In SIGCOMM, 2001.
[18] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms, 2001.

[19] I. Stoica et al. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In SIGCOMM, 2001.

[20] I. Tatarinov et al. The Piazza Peer Data Management
Project. SIGMOD Record, 32(3), 2003.

[21] P. Valduriez and E. Pacitti. Data Management in Large-
scale P2P Systems. In VECPAR, 2004.

