469 research outputs found

    Cyclostationary Empirical Orthogonal Function Sea-Level Reconstruction

    Get PDF
    Since 1993, satellite altimetry has provided accurate measurements of sea surface height with near-global coverage. These measurements led to the first definitive estimates of global mean sea-level (GMSL) rise and have improved understanding of how sea levels are changing regionally at decadal time scales. These relatively short records, however, provide no information about the state of the ocean prior to 1993, and with the modern altimetry record spanning only 20 years, the lower frequency signals that are known to be present in the ocean are difficult or impossible to resolve. Tide gauges, on the other hand, have measured sea level over the last 200 years, with some records extending back to 1807. While providing longer records, the spatial resolution of tide gauge sampling is poor, making studies of the large-scale patterns of ocean variability and estimates of GMSL difficult. Combining the satellite altimetry with the tide gauges using a technique known as sea-level reconstruction results in a data set with the record length of the tide gauges and the near-global coverage of satellite altimetry. Cyclostationary empirical orthogonal functions (CSEOFs), derived from satellite altimetry, are combined with historical sea-level measurements from tide gauges to create the Reconstructed Sea Level data set spanning from 1950 to 2009. Previous sea-level reconstructions have utilized empirical orthogonal functions (EOFs) as basis functions, but by using CSEOFs and by addressing other aspects of the reconstruction procedure, an alternative sea-level reconstruction can be computed. The resulting reconstructed sea-level data set has weekly temporal resolution and half-degree spatial resolution

    Formation and dissociation of hydrogen-related defect centers in Mg-doped GaN

    Full text link
    Moderately and heavily Mg-doped GaN were studied by a combination of post-growth annealing processes and electron beam irradiation techniques during cathodoluminescence (CL) to elucidate the chemical origin of the recombination centers responsible for the main optical emission lines. The shallow donor at 20-30 meV below the conduction band, which is involved in the donor-acceptor-pair (DAP) emission at 3.27 eV, was attributed to a hydrogen-related center, presumably a (VN-H) complex. Due to the small dissociation energy (<2 eV) of the (VNH) complex, this emission line was strongly reduced by low-energy electron irradiation. CL investigations of the DAP at a similar energetic position in Si-doped (n-type) GaN indicated that this emission line is of different chemical origin than the 3.27 eV DAP in Mg-doped GaN. A slightly deeper DAP emission centered at 3.14 eV was observed following low-energy electron irradiation, indicating the appearance of an additional donor level with a binding energy of 100-200 meV, which was tentatively attributed to a VN-related center. The blue band (2.8-3.0 eV) in heavily Mg-doped GaN was found to consist of at least two different deep donor levels at 350±30 meV and 440±40 meV. The donor level at 350±30 meV was strongly affected by electron irradiation and attributed to a H-related defect

    Sea Level Trends in Southeast Asian Seas

    Get PDF
    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future

    Contribution of the Pacific Decadal Oscillation to Global Mean Sea Level Trends

    Get PDF
    Understanding and explaining the trend in global mean sea level (GMSL) have important implications for future projections of sea level rise. While measurements from satellite altimetry have provided accurate estimates of GMSL, the modern altimetry record has only now reached 20 years in length, making it difficult to assess the contribution of decadal to multidecadal climate signals to the global trend. Here, we use a sea level reconstruction to study the 20 year trends in sea level since 1950. In particular, we show that the Pacific Decadal Oscillation (PDO) contributes significantly to the 20 year trends in GMSL. We estimate the PDO contribution to the GMSL trend over the past 20 years to be approximately 0.49 ± 0.25 mm/year and find that removing the PDO contribution reduces the acceleration in GMSL estimated over the past 60 years. Key Points The PDO has contributed 0.49 mm/yr to the current altimetry GMSL trend The PDO has a large impact on regional and global sea level trends Reconstructions allow for the study of decadal-scale climate variability

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    The center effect in liver transplantation in the Eurotransplant region : a retrospective database analysis

    Get PDF
    Apart from donor and recipient risk factors, the effect of center-related factors has significant impact on graft survival after liver transplantation (LT). To investigate this effect in Eurotransplant, a retrospective database analysis was performed, including all LT's in adult recipients (18years) in the Eurotransplant region from 1.1.2007 until 31.12.2013. Additionally, a survey was sent out to all transplant centers requesting information on surgeons' experience and exposure. In total, 10265 LT's were included (median follow-up 3.3years), performed in 39 transplant centers. Funnel plots showed significant differences in graft survival between the transplant centers. After correction for donor and recipient risk, with the Eurotransplant donor risk index (ET-DRI) and the simplified recipient risk index (sRRI) and random effects, these differences diminished. Mean historical volume (in the preceding 5years) was a significant (P<0.001), nonlinear marker for graft survival in the multivariate analysis. This study demonstrates that funnel plots can be used for benchmarking purposes in LT. Case-mix correction can be performed with the use of the ET-DRI and sRRI. The center effect encompasses the entire complex process of preoperative workup, operation to follow-up

    Searching for Tissue-Specific Expression Pattern-Linked Nucleotides of UGT1A Isoforms

    Get PDF
    UDP-glucuronosyltransferases 1A isoforms belong to a superfamily of microsomal enzymes responsible for glucuronidation of numerous endogenous and exogenous compounds. The nine functional UGT1A isoforms are encoded by a single UGT1A gene locus with multiple first exons. The expression of the UGT1A transcripts was measured by quantitative RT-PCR in 23 normal human tissues. The tissue-specific expression patterns were observed in 13 tissues. To understand the regulation mechanism that is responsible for the tissue-specific expression patterns, we scanned the DNA sequence alignments of the putative promoter regions, exon 1 sequences and intron 1 sequences for those expression-pattern-linked nucleotides. Using one of the expression-pattern-linked nucleotides for livers as an example, we showed that a database comprised of these expression-pattern-linked nucleotides could be used to generate focused hypotheses on the problem of tissue-specific expression, which is critical for tissue-specific pharmacodynamics of anticancer drugs

    How do we best synergise climate mitigation actions to co-benefit biodiversity?

    Get PDF
    Acknowledgements We thank Yuka Otsuki Estrada for help in designing and producing the table, and all other authors of the IPBES-IPCC report on the scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change (Pörtner et al., 2021) for cross-cutting discussions during preparation of this analysis. Although this paper is based on the report of the IPBES-IPCC co882 sponsored workshop, the views expressed here represent the individual views of the authors. We would also like to thank the scientific steering committee of the IPBES-IPCC co-sponsored workshop, review editors, the IPCC and IPBES Secretariat, especially Anne Larigauderie, and Technical Support Units. In memory of our friend and co-author, Bob Scholes, who sadly died during the preparation of this synthesis, and who will be sorely missed by all.Peer reviewedPostprin

    Significant reduction in heart rate variability is a feature of acute decompensation of cirrhosis and predicts 90-day mortality

    Get PDF
    Background: Heart rate variability (HRV) is reduced in cirrhosis and in conditions of systemic inflammation. Whether HRV is associated with cirrhosis decompensation and development of acute‐on‐chronic liver failure (ACLF) is unknown. // Aims: To (a) validate wireless remote HRV monitoring in cirrhosis decompensation; (b) determine if severely reduced HRV is a surrogate for inflammation and progression of cirrhosis decompensation; (c) assess if measuring HRV determines prognosis in cirrhosis decompensation. // Methods: One hundred and eleven patients at risk of cirrhosis decompensation at two clinical sites were monitored for HRV. Standard deviation of all normal beat‐beat intervals (SDNN) reflecting HRV was assessed using remote monitoring (Isansys Lifetouch) and/or Holter ECG recording. Clinical outcomes and major prognostic scores were recorded during 90‐day follow‐up. // Results: Reduced HRV denoted by lower baseline SDNN, correlated with severity of decompensation (median 14 (IQR 11‐23) vs 33 (25‐42); P < 0.001, decompensated patients vs stable outpatient cirrhosis). Furthermore, SDNN was significantly lower in patients developing ACLF compared to those with only decompensation (median 10 (IQR9‐12) vs 16 (11‐24); P = 0.02), and correlated inversely with MELD and Child‐Pugh scores, and C‐reactive protein (all P < 0.0001) and white cell count (P < 0.001). SDNN predicted disease progression on repeat measures and appeared an independent predictor of 90‐day mortality (12 patients). An SDNN cut‐off of 13.25 ms had a 98% negative predictive value. // Conclusions: This study demonstrates that remote wireless HRV monitoring identifies cirrhosis patients at high risk of developing ACLF and death, and suggests such monitoring might guide the need for early intervention in such patients. Clinical Trial number: NIHR clinical research network CPMS ID 4949

    FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells against Renal and Pancreatic Cancer Cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are ex vivo expanded major histocompatibility complex (MHC)-unrestricted cytotoxic cells with promising effects against a variety of cancer types. Regulatory T-cells (T-reg) have been shown to reduce the effectiveness of CIK cells against tumor cells. Peptide P60 has been shown to inhibit the immunosuppressive functions of T-regs. This study aimed at examining the effect of p60 on CIK cells efficacy against renal and pancreatic cancer cells. Materials and Methods: The effect of P60 on CIK cytotoxicity was examined using flow cytometry, WST-8-based cell viability assay and interferon γ (IFNγ) ELISA. Results: P60 treatment resulted in a significant decrease in the viability of renal and pancreatic cancer cell lines co-cultured with CIK cells. No increase in IFNγ secretion from CIK cells was detected following treatment with P60. P60 caused no changes in the distribution of major effector cell populations in CIK cell cultures. Conclusion: P60 may potentiate CIK cell cytotoxicity against tumor cells
    corecore