103 research outputs found

    The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex

    Get PDF
    Background: Circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy of note, circular RNAs play a critical role in cancer. Currently, nothing is known about their role in head and neck squamous cell carcinoma (HNSCC). The identification of circular RNAs in HNSCC might become useful for diagnostic and therapeutic strategies in HNSCC. Results: Using samples from 115 HNSCC patients, we find that circPVT1 is over-expressed in tumors compared to matched non-tumoral tissues, with particular enrichment in patients with TP53 mutations. circPVT1 up-and down-regulation determine, respectively, an increase and a reduction of the malignant phenotype in HNSCC cell lines. We show that circPVT1 expression is transcriptionally enhanced by the mut-p53/YAP/TEAD complex. circPVT1 acts as an oncogene modulating the expression of miR-497-5p and genes involved in the control of cell proliferation. Conclusions: This study shows the oncogenic role of circPVT1 in HNSCC, extending current knowledge about the role of circular RNAs in cancer

    Oncogenomic Approaches in Exploring Gain of Function of Mutant p53

    Get PDF
    Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients

    The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment.

    Get PDF
    Circular RNAs (circRNAs) comprise an emerging new class of endogenous RNAs expressed abundantly by the eukaryotic transcriptome. They are characterized by a covalently closed loop structure, resulting in RNA molecules that are more stable than linear RNAs. A growing number of studies indicate that circRNAs play critical roles in human diseases and show great potential as biomarkers and therapeutic targets. The molecular events determined by circRNA activity, the circRNA code, involve other types of noncoding RNA molecules, primarily microRNAs, long noncoding RNAs, and RNA-binding proteins. Herein, we mainly focus on the circRNA-microRNA code, showing how this relationship impacts the regulation of gene expression in cancer. The emerging roles for circRNAs in oncogenic pathways highlight new perspectives for the detailed molecular dissection of cancer pathogenesis and, at the same time, offer new opportunities to design innovative therapeutic strategies. Here, we review recent research advancements in understanding the biogenesis, molecular functions, and significance of circRNAs in cancer diagnosis and treatment

    Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells.

    Get PDF
    MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the MYB addiction of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/β-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the MYB addiction of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival. Copyright© 2019 Ferrata Storti Foundation

    Physical interaction with Yes-associated protein enhances p73 transcriptional activity.

    Get PDF
    Specific protein-protein interactions are involved in a large number of cellular processes and are mainly mediated by structurally and functionally defined domains. Here we report that the nuclear phosphoprotein p73 can engage in a physical association with the Yes-associated protein (YAP). This association occurs under physiological conditions as shown by reciprocal co-immunoprecipitation of complexes from lysates of P19 cells. The WW domain of YAP and the PPPPY motif of p73 are directly involved in the association. Furthermore, as required for ligands to group I WW domains, the terminal tyrosine (Y) of the PPPPY motif of p73 was shown to be essential for the association with YAP. Unlike p73alpha, p73beta, and p63alpha, which bind to YAP, the endogenous as well as exogenously expressed wild-type p53 (wt-p53) and the p73gamma isoform do not interact with YAP. Indeed, we documented that YAP interacts only with those members of the p53 family that have a well conserved PPXY motif, a target sequence for WW domains. Overexpression of YAP causes an increase of p73alpha transcriptional activity. Differential interaction of YAP with members of the p53 family may provide a molecular explanation for their functional divergence in signaling

    YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins

    Get PDF
    Mutant p53 proteins are present in more than half of human cancers. Yes-associated protein (YAP) is a key transcriptional regulator controlling organ growth, tissue homeostasis, and cancer. Here, we report that these two determinants of human malignancy share common transcriptional signatures. YAP physically interacts with mutant p53 proteins in breast cancer cells and potentiates their pro-proliferative transcriptional activity. We found YAP as well as mutant p53 and the transcription factor NF-Y onto the regulatory regions of cyclin A, cyclin B, and CDK1 genes. Either mutant p53 or YAP depletion down-regulates cyclin A, cyclin B, and CDK1 gene expression and markedly slows the growth of diverse breast cancer cell lines. Pharmacologically induced cytoplasmic re-localization of YAP reduces the expression levels of cyclin A, cyclin B, and CDK1 genes both in vitro and in vivo. Interestingly, primary breast cancers carrying p53 mutations and displaying high YAP activity exhibit higher expression levels of cyclin A, cyclin B, and CDK1 genes when compared to wt-p53 tumors

    Physical and Functional Interaction between p53 Mutants and Different Isoforms of p73

    Get PDF
    p53 is the most frequently inactivated tumor suppressor gene in human cancer, whereas its homologue, p73, is rarely mutated. Similarly to p53, p73 can promote growth arrest or apoptosis when overexpressed in certain p53-null tumor cells. It has previously been shown that some human tumor-derived p53 mutants can exert gain of function activity. The molecular mechanism underlying this activity remains to be elucidated. We show here that human tumor-derived p53 mutants (p53His175 and p53Gly281) associate in vitro and in vivo with p73 alpha, beta, gamma, and delta. This association occurs under physiological conditions, as verified in T47D and SKBR3 breast cancer cell lines. The core domain of mutant p53 is sufficient for the association with p73, whereas both the specific DNA binding and the oligomerization domains of p73 are required for the association with mutant p53. Furthermore, p53His175 and p53Gly281 mutants markedly reduce the transcriptional activity of the various isoforms of p73. Thus, human tumor-derived p53 mutants can associate with p73 not only physically but also functionally. These findings define a network involving mutant p53 and the various spliced isoforms of p73 that may confer upon tumor cells a selective survival advantage

    Policaptil Gel Retard significantly reduces body mass index and hyperinsulinism and may decrease the risk of type 2 diabetes mellitus (T2DM) in obese children and adolescents with family history of obesity and T2DM.

    Get PDF
    BACKGROUND: Treatments for childhood obesity are critically needed because of the risk of developing co-morbidities, although the interventions are frequently time-consuming, frustrating, difficult, and expensive. PATIENTS AND METHODS: We conducted a longitudinal, randomised, clinical study, based on a per protocol analysis, on 133 obese children and adolescents (n = 69 males and 64 females; median age, 11.3 years) with family history of obesity and type 2 diabetes mellitus (T2DM). The patients were divided into three arms: Arm A (n = 53 patients), Arm B (n = 45 patients), and Arm C (n = 35 patients) patients were treated with a low-glycaemic-index (LGI) diet and Policaptil Gel Retard®, only a LGI diet, or only an energy-restricted diet (ERD), respectively. The homeostasis model assessment of insulin resistance (HOMA-IR) and the Matsuda, insulinogenic and disposition indexes were calculated at T(0) and after 1 year (T(1)). RESULTS: At T(1), the BMI-SD scores were significantly reduced from 2.32 to 1.80 (p < 0.0001) in Arm A and from 2.23 to 1.99 (p < 0.05) in Arm B. Acanthosis nigricans was significantly reduced in Arm A (13.2% to 5.6%; p < 0.05), and glycosylated-haemoglobin levels were significantly reduced in Arms A (p < 0.005). The percentage of glucose-metabolism abnormalities was reduced, although not significantly. However, the HOMA-IR index was significantly reduced in Arms A (p < 0.0001) and B (p < 0.05), with Arm A showing a significant reduction in the insulinogenic index (p < 0.05). Finally, the disposition index was significantly improved in Arms A (p < 0.0001) and B (p < 0.05). CONCLUSIONS: A LGI diet, particularly associated with the use of Policaptil Gel Retard®, may reduce weight gain and ameliorate the metabolic syndrome and insulin-resistance parameters in obese children and adolescents with family history of obesity and T2DM

    Physical interaction with human tumor-derived p53 mutants inhibits p63 activities

    Get PDF
    The p53 tumor suppressor gene is the most frequent target for genetic alterations in human cancers, whereas the recently discovered homologues p73 and p63 are rarely mutated. We and others have previously reported that human tumor-derived p53 mutants can engage in a physical association with different isoforms of p73, inhibiting their transcriptional activity. Here, we report that human tumor-derived p53 mutants can associate in vitro and in vivo with p63 through their respective core domains. We show that the interaction with mutant p53 impairs in vitro and in vivo sequence-specific DNA binding of p63 and consequently affects its transcriptional activity. We also report that in cells carrying endogenous mutant p53, such as T47D cells, p63 is unable to recruit some of its target gene promoters. Unlike wild-type p53, the binding to specific p53 mutants markedly counteracts p63-induced growth inhibition. This effect is, at least partially, mediated by the core domain of mutant p53. Thus, inactivation of p53 family members may contribute to the biological properties of specific p53 mutants in promoting tumorigenesis and in conferring selective survival advantage to cancer cells

    p73 Is Regulated by Phosphorylation at the G2/M Transition *

    Get PDF
    p73 is a p53 paralog that encodes proapoptotic (transactivation-competent (TA)) and antiapoptotic (dominant negative) isoforms. TAp73 transcription factors mediate cell cycle arrest and/or apoptosis in response to DNA damage and are involved in developmental processes in the central nervous system and the immune system. p73 proteins may also play a role in the regulation of cell growth. Indeed, p73 expression is itself modulated during the cell cycle and TAp73 proteins accumulate in S phase cells. In addition, the function of p73 proteins is also regulated by post-translational modifications and protein-protein interactions in different cellular and pathophysiological contexts. Here we show that p73 is a physiological target of the p34cdc2-cyclin B mitotic kinase complex in vivo. Both p73beta and p73alpha isoforms are hyperphosphorylated in normal mitotic cells and during mitotic arrest induced by microtubule-targeting drugs. p34cdc2-cyclin B phosphorylates and associates with p73 in vivo, which results in a decreased ability of p73 to both bind DNA and activate transcription in mitotic cells. Indeed, p73 is excluded from condensed chromosomes in meta- and anaphase, redistributes throughout the mitotic cytoplasm, and unlike p53, shows no association with centrosomes. Together these results indicate that M phase-specific phosphorylation of p73 by p34cdc2-cyclin B is associated with negative regulation of its transcriptional activating function
    • …
    corecore