2,372 research outputs found

    Self-regulating proportionally controlled heating apparatus and technique

    Get PDF
    A self-regulating proportionally controlled heating apparatus and technique is provided wherein a single electrical resistance heating element having a temperature coefficient of resistance serves simultaneously as a heater and temperature sensor. The heating element is current-driven and the voltage drop across the heating element is monitored and a component extracted which is attributable to a change in actual temperature of the heating element from a desired reference temperature, so as to produce a resulting error signal. The error signal is utilized to control the level of the heater drive current and the actual heater temperature in a direction to reduce the noted temperature difference. The continuous nature of the process for deriving the error signal feedback information results in true proportional control of the heating element without the necessity for current-switching which may interfere with nearby sensitive circuits, and with no cyclical variation in the controlled temperature

    Implementation of a self-controlling heater: A concept

    Get PDF
    Proposed heater uses its own temperature coefficient for sensing function. Heating power is supplied from current source, heater voltage containing temperature information. Dynamic stability is very high since there is no thermal lag as would exist with separate heater and sensor

    Position sensing device employing misaligned magnetic field generating and detecting apparatus Patent

    Get PDF
    Magnetic element position sensing device, using misaligned electromagnet

    Cloud absorption radiometer

    Get PDF
    The Cloud Absorption Radiometer (CAR) was developed to measure spectrally how light is scattered by clouds and to determine the single scattering albedo, important to meteorology and climate studies, with unprecedented accuracy. This measurement is based on ratios of downwelling to upwelling radiation within clouds, and so is not strongly dependent upon absolute radiometric calibration of the instrument. The CAR has a 5-inch aperture and 1 degree IFOV, and spatially scans in a plane orthogonal to the flight vector from the zenith to nadir at 1.7 revolutions per second. Incoming light is measured in 13 spectral bands, using silicon, germanium, and indium-antimonide detectors. Data from each channel is digitally recorded in flight with 10-bit (0.1 percent) resolution. The instrument incorporates several novel features. These features are briefly detailed

    Image-charge induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations

    Get PDF
    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semi-empirical model describing a π\pi-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and theoretical modeling of electron transport across metal-molecule interfaces.Comment: 7 pages, 6 figure

    Interference enhanced thermoelectricity in quinoid type structures

    Full text link
    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelec- tric response of a series of molecules featuring a quinoid core using density functional theory (DFT), as well as a semi-empirical interacting model Hamiltonian describing the {\pi}-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdraw- ing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S^2G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.Comment: 22 pages, 11 figure

    Graphene superlattice with periodically modulated Dirac gap

    Full text link
    Graphene-based superlattice (SL) formed by a periodic gap modulation is studied theoretically using a Dirac-type Hamiltonian. Analyzing the dispersion relation we have found that new Dirac points arise in the electronic spectrum under certain conditions. As a result, the gap between conduction and valence minibands disappears. The expressions for the position of these Dirac points in k{\bf k}-space and threshold value of the potential for their emergence were obtained. At some parameters of the system, we have revealed interface states which form the top of the valence miniband.Comment: 5 pages, 4 figures, accepted to Physical Review

    Observation of magnetic circular dichroism in Fe L_{2,3} x-ray-fluorescence spectra

    Get PDF
    We report experiments demonstrating circular dichroism in the x-ray-fluorescence spectra of magnetic systems, as predicted by a recent theory. The data, on the L_{2,3} edges of ferromagnetic iron, are compared with fully relativistic local spin density functional calculations, and the relationship between the dichroic spectra and the spin-resolved local density of occupied states is discussed

    Reversable heat flow through the carbon nanotube junctions

    Full text link
    Microscopic mechanisms of externally controlled reversable heat flow through the carbon nanotube junctions (NJ) are studied theoretically. Our model suggests that the heat is transfered along the tube section T{\cal T} by electrons (ee) and holes (hh) moving ballistically in either in parallel or in opposite directions and accelerated by the bias source-drain voltage VSDV_{\rm SD} (Peltier effect). We compute the Seebeck coefficient α\alpha , electric σ\sigma and thermal κ\kappa conductivities and find that their magnitudes strongly depend on VSDV_{\rm SD} and VGV_{\rm G}. The sign reversal of α\alpha versus the sign of VGV_{\rm G} formerly observed experimentally is interpreted in this work in terms of so-called chiral tunneling phenomena (Klein paradox)

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles
    • …
    corecore