330 research outputs found

    Prevalence of under and over weight in children with neurodisability, using body composition measures

    Get PDF
    We aimed to compare rates of under and overweight in children with different neurodevelopmental disorders (NDD) by measuring weight, height/length, arm-to-leg bioelectrical impedance (BIA) and subscapular and triceps skinfolds in 146 children aged 4-16 years attending special schools. Z scores were calculated and skinfolds and lean mass Z scores were further adjusted for height. Underweight was found in 9% (14) children (body mass index (BMI) < 2nd) but only 3% (4) had skinfolds <5th centile. Overweight was much commoner, with 41% (58) children having BMI > 95th and 20% (14) had skinfolds >95th centile. Children with cerebral palsy were very short with low BMI and lean mass, but only 8% (3) had skinfolds <5th centile. The children with Down syndrome were also very short and once adjusted for height, half had skinfolds >95th centile. We conclude that overweight and raised body fat is now common in children with NDD, even when the BMI is low

    Identification of multiple system atrophy mimicking Parkinson's disease or progressive supranuclear palsy

    Get PDF
    WWe studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely resembled either Parkinson’s disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases reviewed, 177 (81.2%) were clinically diagnosed and pathologically confirmed as multiple system atrophy (i.e. typical cases), while the remaining 41 (18.8%) had received an alternative clinical diagnosis, including Parkinson’s disease (i.e. Parkinson’s disease mimics; n = 16) and progressive supranuclear palsy (i.e. progressive supranuclear palsy mimics; n = 17). We also reviewed the clinical records of another 105 patients with pathologically confirmed Parkinson’s disease or progressive supranuclear palsy, who had received a correct final clinical diagnosis (i.e. Parkinson’s disease, n = 35; progressive supranuclear palsy-Richardson syndrome, n = 35; and progressive supranuclear palsy-parkinsonism, n = 35). We investigated 12 red flag features that would support a diagnosis of multiple system atrophy according to the current diagnostic criteria. Compared with typical multiple system atrophy, Parkinson’s disease mimics more frequently had a good levodopa response and visual hallucinations. Vertical gaze palsy and apraxia of eyelid opening were more commonly observed in progressive supranuclear palsy mimics. Multiple logistic regression analysis revealed an increased likelihood of having multiple system atrophy [Parkinson’s disease mimic versus typical Parkinson’s disease, odds ratio (OR): 8.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.3] if a patient developed any one of seven selected red flag features in the first 10 years of disease. Severe autonomic dysfunction (orthostatic hypotension and/or urinary incontinence with the need for a urinary catheter) was more frequent in clinically atypical multiple system atrophy than other parkinsonian disorders (Parkinson’s disease mimic versus typical Parkinson’s disease, OR: 4.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 8.8). The atypical multiple system atrophy cases more frequently had autonomic dysfunction within 3 years of symptom onset than the pathologically confirmed patients with Parkinson’s disease or progressive supranuclear palsy (Parkinson’s disease mimic versus typical Parkinson’s disease, OR: 4.7; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.7). Using all included clinical features and 21 early clinical features within 3 years of symptom onset, we developed decision tree algorithms with combinations of clinical pointers to differentiate clinically atypical cases of multiple system atrophy from Parkinson’s disease or progressive supranuclear palsy

    Development of an evidence-based checklist for the detection of drug related problems in type 2 diabetes

    Get PDF
    Objective To develop an evidence-based checklist to identify potential drug related problems (PDRP) in patients with type 2 diabetes. Setting The evidence based checklist was applied to records of ambulatory type 2 diabetes patients in New South Wales, Australia. Method After comprehensive review of the literature, relevant medication groups and potential drug related problems in type 2 diabetes were identified. All the relevant information was then structured in the form of a checklist. To test the utility of the evidence-based checklist a cross-sectional retrospective study was conducted. The PDRP checklist was applied to the data of 148 patients with established type 2 diabetes and poor glycaemic control. The range and extent of DRPs in this population were identified, which were categorized using the PCNE classification. In addition, the relationship between the total as well as each category of DRPs and several of the patients’ clinical parameters was investigated. Main outcome measure: Number and category of DRPs per patient. Results The PDRP checklist was successfully developed and consisted of six main sections. 682 potential DRPs were identified using the checklist, an average of 4.6 (SD = 1.7) per patient. Metabolic and blood pressure control in the study subjects was generally poor: with a mean HbA1c of 8.7% (SD = 1.5) and mean blood pressure of 139.8 mmHg (SD = 18.1)/81.7 mmHg (SD = 11.1). The majority of DRPs was recorded in the categories ‘therapy failure’ (n = 264) and ‘drug choice problem’ (n = 206). Potentially non-adherent patients had a significantly higher HbA1c than patients who adhered to therapy (HbA1c of 9.4% vs. 8.5%; P = 0.01). Conclusion This is the first tool developed specifically to detect potential DRPs in patients with type 2 diabetes. It was used to identify DRPs in a sample of type 2 diabetes patients and demonstrated the high prevalence of DRPs per patient. The checklist may assist pharmacists and other health care professionals to systematically identify issues in therapy and management of their type 2 diabetes patients and enable earlier intervention to improve metabolic control

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research

    The Influence of Victim Vulnerability and Gender on Police Officers’ Assessment of Intimate Partner Violence Risk

    Get PDF
    This study investigated the influence of victim vulnerability factors and gender on risk assessment for intimate partner violence (IPV). 867 cases of male and female perpetrated IPV investigated by Swedish police officers using the Brief Spousal Assault Form for the Evaluation of Risk (BSAFER) were examined. For male-to-female IPV, victim vulnerability factors were associated with summary risk judgments and risk management recommendations. For femaleto-male IPV, vulnerability factors were more often omitted, and consistent associations were not found between vulnerability factors, summary risk judgments, and risk management. Results indicate that B-SAFER victim vulnerability factors can assist in assessing male-to-female IPV risk. Further research is necessary to examine the use of B-SAFER victim vulnerability factors for female-to-male IPV, as results showed victim vulnerability factors to be less relevant to officers’ decision making, particularly their management recommendations. However, several variables external to the B-SAFER, such as the availability of management strategies may account for these findings

    Impact of RNA degradation on gene expression profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis.</p> <p>Methods</p> <p>To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences.</p> <p>Results</p> <p>The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end.</p> <p>Conclusions</p> <p>Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings.</p

    Plasma and Muscle Myostatin in Relation to Type 2 Diabetes

    Get PDF
    OBJECTIVE: Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. DESIGN: 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. RESULTS: Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01), plasma IL-6 (r = 0.34, P<0.05) and VO2 max (r = -0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. CONCLUSIONS: This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes

    Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases.</p> <p>Findings</p> <p>We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (<it>Tetrao tetrix</it>), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACE™ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies.</p> <p>Conclusions</p> <p>In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACE™ 1000). Our RSCA protocol can be applied to fast and reliable screening of MHC class II B diversity of black grouse populations. This will facilitate future large-scale population studies of black grouse and other galliformes species with multiple inseparable MHC loci.</p

    Analysis of Microsatellite Polymorphism in Inbred Knockout Mice

    Get PDF
    Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short tandem sequence repeat (STR) scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8%) loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95%) showed CMPs among detected mouse strains. However, 11 out of 29 (37.9%) KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG)n (50%, 2/4), followed by (GT)n (27.27%, 3/11) and (CA)n (23.08%, 3/13). The microsatellite CMP in (CT)n and (AG)n repeats were 20% (1/5). According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102) revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3) simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice
    corecore