16 research outputs found

    Island Biogeography Theory Applied to Parking Lot Islands

    Get PDF

    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.

    Get PDF
    Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genes FLC and SOC1 (BrFLC and BrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, with FLC repressing and SOC1 promoting flowering. In B. rapa, there are four copies of FLC and three of SOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression of BrSOC1 paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in the BrSOC1 paralogs Br004928, Br00393 and Br009324, although the difference was not significant in Br009324. Thus expression of at least 2 of the 3 BrSOC1 orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of the BrSOC1 orthologs were variable, but there was no association between allelic variation at these loci and flowering time variation. For the BrFLC orthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus the BrFLC orthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of natural variation in such a quantitative trait is challenging

    Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex

    Get PDF
    SummaryThe yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2

    Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex

    Get PDF
    SummaryThe yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2

    Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction

    Get PDF
    Regulation of chromatin structure involves histone posttranslational modifications that can modulate intrinsic properties of the chromatin fiber to change the chromatin state. We used chemically defined nucleosome arrays to demonstrate that H2B ubiquitylation (uH2B), a modification associated with transcription, interferes with chromatin compaction and leads to an open and biochemically accessible fiber conformation. Notably, these effects were specific for ubiquitin, as compaction of chromatin modified with a similar ubiquitin-sized protein, Hub1, was only weakly affected. Applying a fluorescence-based method, we found that uH2B acts through a mechanism distinct from H4 tail acetylation, a modification known to disrupt chromatin folding. Finally, incorporation of both uH2B and acetylated H4 resulted in synergistic inhibition of higher-order chromatin structure formation, possibly a result of their distinct modes of action

    Evolution and Diversification of FRUITFULL Genes in Solanaceae

    Get PDF
    Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function
    corecore