15 research outputs found

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease

    Characterisation and preliminary lipid-lowering evaluation of Lactobacillus isolated from a traditional Serbian dairy product

    No full text
    We investigated the potential probiotic properties of indigenous lactic acid bacteria (LAB) isolated from Serbian homemade cheese. Seventeen LAB strains were isolated and characterised using standard protocols. One of the strains showed several probiotic properties: survival at low pH and in bile salts solution, antimicrobial activity, susceptibility to antibiotics and adhesion to hexodecane. DNA analysis identified the isolate as Lactobacillus casei, hereafter named Lactobacillus casei 5s. The lipid lowering effect of Lactobacillus casei 5s was evaluated in vivo using a hyperlipidemic rat model. Orally administered Lactobacillus casei 5s significantly decreased the elevated total serum cholesterol and triglycerides, and attenuated macro vesicular steatosis in the liver. Moreover, Lactobacillus casei 5s improved the intestinal microbial balance in favour of lactobacilli, while decreasing the number of Escherichia coli cells. The bacteria were re-isolated and identified from the surface of the intestinal mucosa and from the faecal samples of treated animals, indicating adhesiveness and colonisation ability. The results of an acute oral toxicity study in mice and the absence of translocation to other organs demonstrated the safety of the strain. In conclusion, Lactobacillus casei 5s demonstrated promising probiotic potential and might be a good candidate for more detailed investigations

    Survey on proteolytic activity and diversity of proteinase genes in mesophilic lactobacilli

    No full text
    Lactocepins or CEPs are large cell wall bound extracellular proteinases of lactic acid bacteria, involved in protein breakdown and utilization. They are responsible for many health-promoting traits of food products fermented with these organisms, but also essential for probiotic effects of certain strains. Different mesophilic strains selected within the species Lactobacillus zeae, Lb. casei, Lb. rhamnosus, and Lb. plantarum were analyzed for their proteolytic activity towards main fractions of milk proteins-caseins and whey proteins. The strains showing excellent proteolytic features were further examined for presence of corresponding proteinase gene(s). It was found that Lb. zeae LMG17315 possessed catalytic domains of three distinct proteinase genes, unique feature in Lb. casei group, which are similar but not identical to previously characterized prtP and prtR genes. Lb. casei neotype strain ATCC393 was also analysed and based on obtained results its reclassification in taxon Lb. zeae is supported. In addition, we report catalytic domain of prtR-type gene in Lb. plantarum LMG9208, which is first such report in this species, and it is first time that this gene is reported outside Lb. casei group

    Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms

    Get PDF
    Background: Mucosal surfaces are coated with layers of mucus gel that protect the underlying tissues and promote colonization by members of the commensal microflora. Lactobacillus fermentum is a common inhabitant of the oral cavity, gastrointestinal and reproductive tracts and is one of the most important lactic acid bacteria contributing to the formation of a healthy intestinal microflora. We have investigated the proteolytic activity in L. fermentum in response to interactions with the MUC5B mucin, which is a major component of mucus gels at sites colonized by this micro-organism. Methods: Biofilms of Lactobacillus fermentum were established in mini-flow cells in the presence or absence of human salivary MUC5B. The proteolytic activity of biofilm cells was examined in a confocal scanning laser microscope with a fluorescent protease substrate. Degradation of MUC5B by L. fermentum was analysed using SDS-PAGE followed by Western blotting with antisera raised against the MUC5B peptide. Cell surface proteins differentialy expressed in a MUC5B-rich environment were identified with the aid of comparative two-dimensional electrophoresis followed by LC-MS/MS. Results: Lactobacillus fermentum adhered well to surfaces coated with MUC5B mucin and in biofilms of L. fermentum formed in a MUC5B environment, the proportion of proteolytically-active cells (47 ± 0.6% of the population), as shown by cleavage of a fluorescent casein substrate, was significantly greater (p < 0.01) than that in biofilms formed in nutrient broth (0.4 ± 0.04% of the population). Thus, the presence of MUC5B mucins enhanced bacterial protease activity. This effect was mainly attributable to contact with surface-associated mucins rather than those present in the fluid phase. Biofilms of L. fermentum were capable of degrading MUC5B mucins suggesting that this complex glycoprotein can be exploited as a nutrient source by the bacteria. Comparison of the surface proteomes of biofilm cells of L. fermentum in a MUC5B environment with those in nutrient broth using two-dimensional electrophoresis and mass spectroscopy, showed that the enhanced proteolytic activity was associated with increased expression of a glycoprotease; O-sialoglycoprotein endopeptidase, as well as chaperone proteins such as DnaK and trigger factor. Conclusions: Adhesion to mucin-coated surfaces leads to a shift towards a more protease-active phenotype within L. fermentum biofilms and proteases produced within the biofilms can degrade MUC5B mucins. The enhanced proteolytic activity was associated with an increase in O-sialoglycoprotein endopeptidase on the cell surface. We propose that the upregulation of chaperone proteins in the mucin environment may contribute to the protease-active phenotype through activation of the glycopeptidase. This would represent one way for commensal lactobacilli e.g. L. fermentum to exploit complex substrates in their local environment in order to survive on mucosal surfaces
    corecore