172 research outputs found

    Degrees of order : A comparison of nanocrystal and amorphous solids for poorly soluble drugs

    Get PDF
    Poor aqueous solubility is currently a prevalent issue in the development of small molecule pharmaceuticals. Several methods are possible for improving the solubility, dissolution rate and bioavailability of Biopharmaceutics Classification System (BCS) class II and class IV drugs. Two solid state approaches, which rely on reductions in order, and can theoretically be applied to all molecules without any specific chemical prerequisites (compared with e.g. ionizable or co-former groups, or sufficient lipophilicity), are the use of the amorphous form and nanocrystals. Research involving these two approaches is relatively extensive and commercial products are now available based on these technologies. Nevertheless, their formulation remains more challenging than with conventional dosage forms. This article describes these two technologies from both theoretical and practical perspectives by briefly discussing the physicochemical backgrounds behind these approaches, as well as the resulting practical implications, both positive and negative. Case studies demonstrating the benefits and challenges of these two techniques are presented.Peer reviewe

    Spectroscopic investigation and quantitation of polymorphism and crystallinity of pharmaceutical compounds

    Get PDF
    Spectroscopy is increasingly used to investigate and monitor the solid state forms of pharmaceutical materials and products. Spectroscopy's speed, non-destructive sampling, compatibility with fibre optics and safety also make it attractive for in-line monitoring. In this thesis, the spectroscopic techniques Fourier transform Raman spectroscopy, terahertz pulsed spectroscopy and second harmonic generation were used to characterise and quantify polymorphism and crystallinity of pharmaceutical compounds. Where possible, the multivariate analysis technique partial least squares was used for quantitative analysis. Fourier transform Raman spectroscopy detects polarisability changes mainly associated with molecular vibrations. Terahertz pulsed spectroscopy is a new spectroscopic technique that operates between the infrared and microwave regions of the electromagnetic spectrum and detects dipole moment changes mainly associated with crystalline phonon vibrations in the solid state. Second harmonic generation is a nonlinear optical phenomenon that depends on the dipole moment in crystals and crystal symmetry. Several materials capable of existing in different solid state forms were used. FT-Raman spectroscopy was able to differentiate carbamazepine forms I and III, enalapril maleate forms I and II and y-crystalline and amorphous indomethacin. Combined with partial least squares the technique could quantify binary mixtures of CBZ forms I and III with a limit of detection as low as 1 %, and mixtures of enalapril maleate with a limit of detection of as low as 2%. Terahertz pulsed spectroscopy obtained very different spectra for carbamazepine forms I and III, enalapril maleate forms I and II, y-crystalline and amorphous indomethacin, crystalline and supercooled thermotropic liquid crystalline fenoprofen calcium, three forms of lactose, and five forms of sulphathiazole. At present the modes in the spectra cannot be attributed to specific phonon modes. Quantitation of binary mixtures of different forms of a compound using partial least squares analysis usually resulted in a limit of detection of about 1 %. Second harmonic generation was used to quantify binary mixtures of different forms of enalapril maleate and lactose, as well as binary mixtures of enalapril maleate form II and polyvinylpyrrolidone. A quantitative relationship was present for each of the mixtures, however the limits of detection were usually above 10%. The high value is probably due to the machine being a prototype and univariate analysis associated with a single output variable. Future improvements to the apparatus and measurement parameters are likely to reduce the limits of detection. Ranitidine hydrochloride polymorphs could also be differentiated using second harmonic generation, however y-crystalline and amorphous indomethacin and forms I and III of carbamazepine could not. The methods used in this thesis were successfully used for qualitative and quantitative analysis of polymorphism and crystallinity of pharmaceutical compounds. TPS and SHG are useful additions to the range of experimental techniques that can be used to investigate and monitor properties of pharmaceutical solids

    Non-linear optical imaging – Introduction and pharmaceutical applications

    Get PDF
    Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The combined potential of these phenomena for pharmaceutical imaging includes chemical and solidstate specificity, high optical spatial and temporal resolution, nondestructive and non-contact analysis, no requirement for labels, and the compatibility with imaging in aqueous and biological environments. In this article, the theory and practical aspects of nonlinear imaging are briefly introduced and pharmaceutical and biopharmaceutical applications are considered. These include material and dosage form characterization, drug release, and drug and nanoparticle distribution in tissues and within live cells. The advantages and disadvantages of the technique in the context of these analyses are also discussed

    Isomalt and its diastereomer mixtures as stabilizing excipients with freeze-dried lactate dehydrogenase

    Get PDF
    The purpose of this research was to study isomalt as a protein-stabilizing excipient with lactate dehydrogenase (LDH) during freeze-drying and subsequent storage and compare it to sucrose, a standard freeze-drying excipient. Four different diastereomer mixtures of isomalt were studied. The stability of the protein was studied with a spectrophotometric enzyme activity test and circular dichroism after freeze-drying and after 21 days of storage at 16% RH. Physical stability was analyzed with differential scanning calorimetry and Karl Fischer titration. Statistical analysis was utilized in result analysis. LDH activity was almost completely retained after freeze-drying with sucrose; whereas samples stabilized with isomalt diastereomer mixtures had a considerably lower protein activity. During storage the sucrose-containing samples lost most of their enzymatic activity, while the isomalt mixtures retained the protein activity better. In all cases changes to protein secondary structure were observed. Isomalt diastereomer mixtures have some potential as protein-stabilizing excipients during freeze-drying and subsequent storage. Isomalt stabilized LDH moderately during freeze-drying; however it performed better during storage. Future studies with other proteins are required to evaluate more generally whether isomalt would be a suitable excipient for pharmaceutical freeze-dried protein formulations.Peer reviewe

    Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy

    Get PDF
    Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and gamma- and alpha-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 degrees C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.Peer reviewe

    Image-based dissolution analysis for tracking the surface stability of amorphous powders

    Get PDF
    Poor solubility of crystalline drugs can be overcome by amorphization - the production of high-energy disordered solid with improved solubility. However, the improved solubility comes at a cost of reduced stability; amorphous drugs are prone to recrystallization. Because of recrystallization, the initial solubility enhancement is eventually lost. Therefore, it is important to understand the recrystallization process during storage of amorphous materials and its impact on dissolution/solubility. Here, we demonstrate the use of image-based single-particle analysis (SPA) to consistently monitor the solubility of an amorphous indomethacin sample over time. The results are compared to the XRPD signal of the same sample. For the sample stored at 22 degrees C/23 % relative humidity (RH), full crystallinity as indicated by XRPD was reached around day 40, whereas a solubility corresponding to that of the. crystalline form was measured with SPA at day 25. For the sample stored at 22 degrees C/75 % RH, the XRPD signal indicated a rapid initial phase of crystallization. However, the sample failed to fully crystallize in 80 days. With SPA, solubility slightly above that of the crystalline. form was measured already on the second day. To conclude, the solubility measured with SPA directly reflects the solid-state changes occurring on the particle surface. Therefore, it can provide vital information - in a straightforward manner while requiring only minuscule sample amounts - for understanding the effect of storage conditions on the dissolution/solubility of amorphous materials, especially important in pharmaceutical science.Peer reviewe

    Machine-Vision-Enabled Salt Dissolution Analysis

    Get PDF
    Salt formation is a well-established method to increase the solubility of ionizable drug candidates. However, possible conversion of salt to its original form of free acid or base - disproportionation - can have a drastic effect on the solubility and consequently the bioavailability of a drug. Therefore, during the salt selection process, the salt dissolution behavior should be well understood. Improved understanding could be achieved by a method that enables simultaneous screening of small sample amounts and detailed dissolution process analysis. Here, we use a machine-vision-based single-particle analysis (SPA) method to successfully determine the pH-solubility profile, intrinsic solubility, common-ion effect, pKa, pHmax, and Ksp values of three model compounds in a fast and low sample consumption (<1 mg) manner. Moreover, the SPA method enables, with a particle- scale resolution, in situ observation of the disproportionation process and its immediate effect on the morphology and solubility of dissolving species. In this study, a potentially higher energy thermodynamic solid-state form of diclofenac free acid and an intriguing conversion to liquid verapamil free base were observed upon disproportionation of the respective salts. As such, the SPA method offers a low sample consumption platform for fast yet elaborate characterization of the salt dissolution behavior.Peer reviewe

    Image-Based Investigation : Biorelevant Solubility of α and γ Indomethacin

    Get PDF
    Solubility is a physicochemical property highly dependent on the solid-state form of a compound. Thus, alteration of a compound’s solid-state form can be undertaken to enhance the solubility of poorly soluble drug compounds. In the Biopharmaceutics Classification System (BCS), drugs are classified on the basis of their aqueous solubility and permeability. However, aqueous solubility does not always correlate best with in vivo solubility and consequently bioavailability. Therefore, the use of biorelevant media is a more suitable approach for mimicking in vivo conditions. Here, assessed with a novel image-based single-particle-analysis (SPA) method, we report a constant ratio of solubility increase of 3.3 ± 0.5 between the α and γ solid-state forms of indomethacin in biorelevant media. The ratio was independent of pH, ionic strength, and surfactant concentration, which all change as the drug passes through the gastrointestinal tract. On the basis of the solubility ratio, a free-energy difference between the two polymorphic forms of 2.9 kJ/mol was estimated. Lastly, the use of the SPA approach to assess solubility has proven to be simple, fast, and both solvent- and sample-sparing, making it an attractive tool for drug development.Peer reviewe
    corecore