290 research outputs found

    A massive, quiescent galaxy at redshift of z=3.717

    Get PDF
    In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z\sim2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z\sim3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7×\times1011^{11} M_\odot whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely to the published version. Uploaded 6 months after publication in accordance with Nature polic

    ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4

    Get PDF
    We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize 7000\sim7000 galaxies from 1<z<41<z<4 into 9090 groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with R50R\sim 50 resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000\AA\ break, D(4000)D(4000), we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest Hα\alpha emission (EWREST40EW_{\rm REST}\sim40\AA) compared to more typical star-forming composite SEDs at log10(M/M)10.5\log_{10}(M/M_\odot)\sim10.5 (EWREST80EW_{\rm REST}\sim80\AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from z3z\sim3 to z1z\sim1, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at z1.5z\lesssim1.5. We calculate average quenching timescales of 1.6 Gyr at z1.5z\sim1.5 and 0.9 Gyr at z2.5z\sim2.5 and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since z2z\sim2.Comment: Accepted for publication in The Astrophysical Journa

    The Bright End of the z~9 and z~10 UV Luminosity Functions using all five CANDELS Fields

    Get PDF
    The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC observations over the CANDELS fields have been a remarkable resource for constraining the bright end of high redshift UV luminosity functions (LFs). However, the lack of HST 1.05-micron observations over the CANDELS fields has made it difficult to identify z~9-10 sources robustly, since such data are needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We report here on the successful identification of many such z~9-10 sources from a new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy candidates with observations at 1.05 microns, to search for a robust Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected from the full HST, Spitzer/IRAC S-CANDELS observations, and the deepest-available ground-based optical+near-infrared observations. We identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up strategy has proven to be very efficient in making use of scarce HST time to secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we replicate the selection process for our sample (both the preselection and follow-up) and use it to improve current estimates for the volume density of bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and 8(-3)(+9)x lower, respectively, than found at z~8. When compared with the best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag), these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower, respectively, than the extrapolated trends. Our new results are broadly consistent with the "accelerated evolution" scenario at z>8, as seen in many theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in press, including some minor textual corrections identified at the proof stag

    Near infrared spectroscopy and star-formation histories of 3<z<4 quiescent galaxies

    Get PDF
    We present Keck-MOSFIRE H and K spectra for a sample of 24 candidate quiescent galaxies (QGs) at 3<z<4, identified from UVJ colors and photometric redshifts in the ZFOURGE and 3DHST surveys. We obtain spectroscopic redshifts for half of the sample, using absorption or emission lines, and confirm the high accuracy of the photometric redshifts with a median error of 1.2%. Two galaxies turn out to be dusty objects at lower redshifts (z<2.5), and are the only two detected in the sub-mm with ALMA. High equivalent-width [OIII] was observed in two galaxies, contributing up to 30% of the K-band flux and mimicking the colors of an old stellar population. This implies a failure rate of only 20% for the UVJ selection at these redshifts. Balmer absorption was identified in 4 of the brighest galaxies, confirming the absence of OB stars. Modeling all QGs with a wide range of star-formation histories, we find sSFR a factor of 10 below the main sequence (MS) for all but one galaxy, and less than 0.01 Gyr1^{-1} for half of the sample. This is consistent with the Hβ\beta and [OII] luminosities, and the ALMA non-detections. We then find that these QGs have quenched on average 300 Myr before observation, between z=3.5 and 5, and that they formed at z~5.5 with a mean SFR~300 Msun/yr. Considering an alternative selection of QGs based solely on the sSFR from SED modeling, we find that galaxies a factor 10 below the MS are 40% more numerous than UVJ-quiescent galaxies, implying that the UVJ selection is pure but incomplete. Current models fail at reproducing our observations and underestimate either the number density of QGs by more than an order of magnitude or the duration of their quiescence by a factor two. Overall, these results confirm the existence of an unexpected population of QGs at z>3, and offer the first insights on their formation history. [abridged]Comment: 30 pages (+ appendix), 18 figures, accepted for publication in A&

    Magnetic properties of a new molecular-based spin-ladder system: (5IAP)2CuBr4*2H2O

    Full text link
    We have synthesized and characterized a new spin-1/2 Heisenberg antiferromagnetic ladder: bis 5-iodo-2-aminopyridinium tetrabromocuprate(II) dihydrate. X-ray diffraction studies show the structure of the compound to consist of well isolated stacked ladders and the interaction between the Cu(2+) atoms to be due to direct Br...Br contacts. Magnetic susceptibility and magnetization studies show the compound to be in the strong-coupling limit, with the interaction along the rungs (J' ~ 13 K) much greater than the interaction along the rails (J ~ 1 K). Magnetic critical fields are observed near 8.3 T and 10.4 T, respectively, establishing the existence of the energy gap.Comment: 10 pages, 4 figures, submitted to Phys. Rev. B Figure 4 did not print. *.eps files replaced with figures.ps fil

    Consistent dynamical and stellar masses with potential light IMF in massive quiescent galaxies at 3<z<43 < z < 4 using velocity dispersions measurements with MOSFIRE

    Full text link
    We present the velocity dispersion measurements of four massive 1011M\sim10^{11}M_\odot quiescent galaxies at 3.2<z<3.73.2 < z < 3.7 based on deep H and K-band spectra using the Keck/MOSFIRE near-infrared spectrograph. We find high velocity dispersions of order σe250\sigma_e\sim250 km/s based on strong Balmer absorption lines and combine these with size measurements based on HST/WFC3 F160W imaging to infer dynamical masses. The velocity dispersion are broadly consistent with the high stellar masses and small sizes. Together with evidence for quiescent stellar populations, the spectra confirm the existence of a population of massive galaxies that formed rapidly and quenched in the early universe z>4z>4. Investigating the evolution at constant velocity dispersion between z3.5z\sim3.5 and z2z\sim2, we find a large increase in effective radius 0.35±0.120.35\pm0.12 dex and in dynamical-to-stellar mass ratio of 0.33$\pm0.08$ dex, with low expected contribution from dark matter. The dynamical masses for our $z\sim3.5$ sample are consistent with the stellar masses for a Chabrier initial mass function (IMF), with the ratio = -0.13±\pm0.10 dex suggesting an IMF lighter than Salpeter may be common for massive quiescent galaxies at z>3z>3. This is surprising in light of the Salpeter or heavier IMFs found for high velocity dispersion galaxies at z2z\sim2 and cores of present-day ellipticals, which these galaxies are thought to evolve into. Future imaging and spectroscopic observations with resolved kinematics using the upcoming James Webb Space Telescope could rule out potential systematics from rotation, and confirm these results.Comment: 11 pages, 3 figures. Accepted to ApJ Letter

    A low [CII]/[NII] ratio in the center of a massive galaxy at z=3.7: witnessing the transition to quiescence at high-redshift?

    Get PDF
    Understanding the process of quenching is one of the major open questions in galaxy evolution, and crucial insights may be obtained by studying quenched galaxies at high redshifts, at epochs when the Universe and the galaxies were younger and simpler to model. However, establishing the degree of quiescence in high redshift galaxies is a challenging task. One notable example is Hyde, a recently discovered galaxy at z=3.709. As compact (r~0.5 kpc) and massive (M*~1e11 Msun) as its quenched neighbor Jekyll, it is also extremely obscured yet only moderately luminous in the sub-millimeter. Panchromatic modeling suggested it could be the first galaxy found in transition to quenching at z>3, however the data were also consistent with a broad range of star-formation activity, including moderate SFR in the lower scatter of the galaxy main-sequence (MS). Here, we describe ALMA observations of the [CII] 157um and [NII] 205um far-infrared emission lines. The [CII] emission within the half-light radius is dominated by ionized gas, while the outskirts are dominated by PDRs or neutral gas. This suggests that the ionization in the center is not primarily powered by on-going star formation, and could come instead from remnant stellar populations formed in an older burst, or from a moderate AGN. Accounting for this information in the multi-wavelength modeling provides a tighter constraint on the star formation rate of SFR=5018+2450^{+24}_{-18} Msun/yr. This rules out fully quenched solutions, and favors SFRs more than factor of two lower than expected for a galaxy on the MS, confirming the nature of Hyde as a transition galaxy. Theses results suggest that quenching happens from inside-out, and starts before the galaxy expels or consumes all its gas reservoirs. Similar observations of a larger sample would determine whether this is an isolated case or the norm for quenching at high-redshift. [abriged]Comment: Accepted for publication in A&A. 14 pages, 9 figure

    The distribution of satellites around massive galaxies at 1<z<3 in ZFOURGE/CANDELS: dependence on star formation activity

    Get PDF
    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1<z<3 using imaging from the FourStar Galaxy Evolution Survey (ZFOURGE) and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). The deep near-IR data select satellites down to log(M/M)>9\log(M/M_\odot)>9 at z<3. The radial satellite distribution around centrals is consistent with a projected NFW profile. Massive quiescent centrals, log(M/M)>10.78\log(M/M_\odot)>10.78, have \sim2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ\sigma even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48<log(M/M)<10.7810.48<\log(M/M_\odot)<10.78. Comparing to the Guo2011 semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from \sim0 for log(Mh/M)\log(M_h/M_\odot)\sim11 to \sim1 for log(Mh/M)\log(M_h/M_\odot)\sim13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.Comment: 19 pages, 17 figures, accepted by ApJ. Information on ZFOURGE can be found at http://zfourge.tamu.ed
    corecore