1,758 research outputs found

    An ultra melt-resistant hydrogel from food grade carbohydrates

    Get PDF
    © 2017 The Royal Society of Chemistry. We report a binary hydrogel system made from two food grade biopolymers, agar and methylcellulose (agar-MC), which does not require addition of salt for gelation to occur and has very unusual rheological and thermal properties. It is found that the storage modulus of the agar-MC hydrogel far exceeds those of hydrogels from the individual components. In addition, the agar-MC hydrogel has enhanced mechanical properties over the temperature range 25-85 °C and a maximum storage modulus at 55 °C when the concentration of methylcellulose was 0.75% w/v or higher. This is explained by a sol-gel phase transition of the methylcellulose upon heating as supported by differential scanning calorimetry (DSC) measurements. Above the melting point of agar, the storage modulus of agar-MC hydrogel decreases but is still an elastic hydrogel with mechanical properties dominated by the MC gelation. By varying the mixing ratio of the two polymers, agar and MC, it was possible to engineer a food grade hydrogel of controlled mechanical properties and thermal response. SEM imaging of flash-frozen and freeze-dried samples revealed that the agar-MC hydrogel contains two different types of heterogeneous regions of distinct microstructures. The latter was also tested for its stability towards heat treatment which showed that upon heating to temperatures above 120 °C its structure was retained without melting. The produced highly thermally stable hydrogel shows melt resistance which may find application in high temperature food processing and materials templating

    Simulation and beyond – Principles of effective obstetric training

    Get PDF
    Simulation training provides a safe, non-judgmental environment where members of the multi-professional team can practice both their technical and non-technical skills. Poor teamwork and communication are recurring contributing factors to adverse maternal and neonatal outcomes. Simulation can improve outcomes and is now a compulsory part of the national training matrix. Components of successful training include involving the multi-professional team, high fidelity models, keeping training on-site, and focussing on human factors training; a key factor in adverse patient outcomes. The future of simulation training is an exciting field, with the advent of augmented reality devices and the use of artificial intelligence

    Generalization for Deep Reinforcement Learning for Inverse Kinematics of Concentric Tube Robots

    Get PDF

    Spatial calibration of a 2D/3D ultrasound using a tracked needle

    Get PDF
    PURPOSE: Spatial calibration between a 2D/3D ultrasound and a pose tracking system requires a complex and time-consuming procedure. Simplifying this procedure without compromising the calibration accuracy is still a challenging problem. METHOD: We propose a new calibration method for both 2D and 3D ultrasound probes that involves scanning an arbitrary region of a tracked needle in different poses. This approach is easier to perform than most alternative methods that require a precise alignment between US scans and a calibration phantom. RESULTS: Our calibration method provides an average accuracy of 2.49 mm for a 2D US probe with 107 mm scanning depth, and an average accuracy of 2.39 mm for a 3D US with 107 mm scanning depth. CONCLUSION: Our method proposes a unified calibration framework for 2D and 3D probes using the same phantom object, work-flow, and algorithm. Our method significantly improves the accuracy of needle-based methods for 2D US probes as well as extends its use for 3D US probes

    Hybrid Loss with Network Trimming for Disease Recognition in Gastrointestinal Endoscopy

    Get PDF
    EndoTect Challenge 2020, which aims at the detection of gastrointestinal diseases and abnormalities, consists of three tasks including Detection, Efficient Detection and Segmentation in endoscopic images. Although pathologies belonging to different classes can be manually separated by experienced experts, however, existing classification models struggle to discriminate them due to low inter-class variability. As a result, the models’ convergence deteriorates. To this end, we propose a hybrid loss function to stabilise model training. For the detection and efficient detection tasks, we utilise ResNet-152 and MobileNetV3 architectures, respectively, along with the hybrid loss function. For the segmentation task, Cascade Mask R-CNN is investigated. In this paper, we report the architecture of our detection and segmentation models and the performance of our methods on HyperKvasir and EndoTect test dataset

    Linking medical faculty stress/burnout to willingness to implement medical school curriculum change: a preliminary investigation

    Full text link
    Rationale, aims and objectivesBalancing administrative demands from the medical school while providing patient support and seeking academic advancement can cause personal hardship that ranges from high stress to clinically recognizable conditions such as burnout. Regarding the importance of clinical faculties’ burnout and its effects on different aspects of their professional career, this study was conducted and aimed to evaluate the relationship between willingness to change teaching approaches as characterized by a modified stage‐of‐change model and measures of stress and burnout.MethodsThis descriptive analytic study was conducted on 143 clinical faculty members of Tehran University of Medical Sciences in Iran. Participants were asked to complete three questionnaires: a modified stages of change questionnaire the Maslach Burnout Inventory and the General Health Questionnaire. Data were analysed by SPSS: 16 using non‐parametric statistical tests such as multiple regression and ICC (intra‐class coefficient) and Spearman correlation coefficient test.ResultA significant relationship was found between faculty members’ readiness to change teaching approaches and the subscales of occupational burnout. Specifically, participants with low occupational burnout were more likely to be in the action stage, while those with high burnout were in the attitude or intention stage, which could be understood as not being ready to implement change. There was no significant correlation between general health scores and stage of change. ConclusionsWe found it feasible to measure stages of change as well as stress/burnout in academic doctors. Occupational burnout directly reduces the readiness to change. To have successful academic reform in medical schools, it therefore would be beneficial to assess and manage occupational burnout among clinical faculty members.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135679/1/jep12439.pd

    Photometric and spectroscopic variability of the FUor star V582 Aurigae

    Full text link
    We carried out BVRI CCD photometric observations in the field of V582 Aur from 2009 August to 2013 February. We acquired high-, medium-, and low-resolution spectroscopy of V582 Aur during this period. To study the pre-outburst variability of the target and construct its historical light curve, we searched for archival observations in photographic plate collections. Both CCD and photographic observations were analyzed using a sequence of 14 stars in the field of V582 Aur calibrated in BVRI. The pre-outburst photographic observations of V582 Aur show low-amplitude light variations typical of T Tauri stars. Archival photographic observations indicate that the increase in brightness began in late 1984 or early 1985 and the star reached the maximum level of brightness at 1986 January. The spectral type of V582 Aur can be defined as G0I with strong P Cyg profiles of H alpha and Na I D lines, which are typical of FU Orionis objects. Our BVRI photometric observations show large amplitude variations V~2.8 mag. during the 3.5 year period of observations. Most of the time, however, the star remains in a state close to the maximum brightness. The deepest drop in brightness was observed in the spring of 2012, when the brightness of the star fell to a level close to the pre-outburst. The multicolor photometric data show a color reversal during the minimum in brightness, which is typical of UX Ori variables. The corresponding spectral observations show strong variability in the profiles and intensities of the spectral lines (especially H alpha), which indicate significant changes in the accretion rate. On the basis of photometric monitoring performed over the past three years, the spectral properties of the maximal light, and the shape of the long-term light curve, we confirm the affiliation of V582 Aur to the group of FU Orionis objects.Comment: 9 pages, 8 figures, accepted for publication in A&

    3D Generative Model Latent Disentanglement via Local Eigenprojection

    Get PDF
    Designing realistic digital humans is extremely complex. Most data-driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural-network-based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state-of-the-art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre-trained models are available at github.com/simofoti/LocalEigenprojDisentangled

    Imaging skins: stretchable and conformable on-organ beta particle detectors for radioguided surgery

    Get PDF
    While radioguided surgery (RGS) traditionally relied on detecting gamma rays, direct detection of beta particles could facilitate the detection of tumour margins intraoperatively by reducing radiation noise emanating from distant organs, thereby improving the signal-to-noise ratio of the imaging technique. In addition, most existing beta detectors do not offer surface sensing or imaging capabilities. Therefore, we explore the concept of a stretchable scintillator to detect beta-particles emitting radiotracers that would be directly deployed on the targeted organ. Such detectors, which we refer to as imaging skins, would work as indirect radiation detectors made of light-emitting agents and biocompatible stretchable material. Our vision is to detect scintillation using standard endoscopes routinely employed in minimally invasive surgery. Moreover, surgical robotic systems would ideally be used to apply the imaging skins, allowing for precise control of each component, thereby improving positioning and task repeatability. While still in the exploratory stages, this innovative approach has the potential to improve the detection of tumour margins during RGS by enabling real-time imaging, ultimately improving surgical outcomes

    Crossover in the scaling of island size and capture zone distributions

    Full text link
    Simulations of irreversible growth of extended (fractal and square) islands with critical island sizes i=1 and 2 are performed in broad ranges of coverage \theta and diffusion-to-deposition ratios R in order to investigate scaling of island size and capture zone area distributions (ISD, CZD). Large \theta and small R lead to a crossover from the CZD predicted by the theory of Pimpinelli and Einstein (PE), with Gaussian right tail, to CZD with simple exponential decays. The corresponding ISD also cross over from Gaussian or faster decays to simple exponential ones. For fractal islands, these features are explained by changes in the island growth kinetics, from a competition for capture of diffusing adatoms (PE scaling) to aggregation of adatoms with effectively irrelevant diffusion, which is characteristic of random sequential adsorption (RSA) without surface diffusion. This interpretation is confirmed by studying the crossover with similar CZ areas (of order 100 sites) in a model with freezing of diffusing adatoms that corresponds to i=0. For square islands, deviations from PE predictions appear for coverages near \theta=0.2 and are mainly related to island coalescence. Our results show that the range of applicability of the PE theory is narrow, thus observing the predicted Gaussian tail of CZD may be difficult in real systems.Comment: 9 pages, 7 figure
    • 

    corecore