5 research outputs found

    Data from: Effect of hidden relatedness on single-step genetic evaluation in an advanced open-pollinated breeding program

    No full text
    Open-pollinated (OP) mating is frequently used in forest tree breeding due to the relative temporal and financial efficiency of the approach. The trade-off is the lower precision of the estimated genetic parameters. Pedigree/sib-ship reconstruction has been proven as a tool to correct and complete pedigree information and to improve the precision of genetic parameter estimates. Our study analyzed an advanced generation Eucalyptus population from an OP breeding program using single-step genetic evaluation. The relationship matrix inferred from sib-ship reconstruction was used to rescale the marker-based relationship matrix (G matrix). This was compared with a second scenario that used rescaling based on the documented pedigree. The proposed single-step model performed better with respect to both model fit and the theoretical accuracy of breeding values. We found that the prediction accuracy was superior when using the pedigree information only when compared with using a combination of the pedigree and genomic information. This pattern appeared to be mainly a result of accumulated unrecognized relatedness over several breeding cycles, resulting in breeding values being shrunk toward the population mean. Using biased, pedigree-based breeding values as the base with which to correlate predicted GEBVs, resulted in the underestimation of prediction accuracies. Using breeding values estimated on the basis of sib-ship reconstruction resulted in increased prediction accuracies of the genotyped individuals. Therefore, selection of the correct base for estimation of prediction accuracy is critical. The beneficial impact of sib-ship reconstruction using G matrix rescaling was profound, especially in traits with inbreeding depression, such as stem diameter

    Genomics-Enabled Management of Genetic Resources in Radiata Pine

    No full text
    Traditional tree improvement is cumbersome and costly. Our main objective was to assess the extent to which genomic data can currently accelerate and improve decision making in this field. We used diameter at breast height (DBH) and wood density (WD) data for 4430 tree genotypes and single-nucleotide polymorphism (SNP) data for 2446 tree genotypes. Pedigree reconstruction was performed using a combination of maximum likelihood parentage assignment and matching based on identity-by-state (IBS) similarity. In addition, we used best linear unbiased prediction (BLUP) methods to predict phenotypes using SNP markers (GBLUP), recorded pedigree information (ABLUP), and single-step “blended” BLUP (HBLUP) combining SNP and pedigree information. We substantially improved the accuracy of pedigree records, resolving the inconsistent parental information of 506 tree genotypes. This led to substantially increased predictive ability (i.e., by up to 87%) in HBLUP analyses compared to a baseline from ABLUP. Genomic prediction was possible across populations and within previously untested families with moderately large training populations (N = 800–1200 tree genotypes) and using as few as 2000–5000 SNP markers. HBLUP was generally more effective than traditional ABLUP approaches, particularly after dealing appropriately with pedigree uncertainties. Our study provides evidence that genome-wide marker data can significantly enhance tree improvement. The operational implementation of genomic selection has started in radiata pine breeding in New Zealand, but further reductions in DNA extraction and genotyping costs may be required to realise the full potential of this approach
    corecore