56 research outputs found

    A critical evaluation of the water supply and stormwater management performance of retrofittable domestic rainwater harvesting systems

    Get PDF
    Rainwater harvesting systems are often used as both an alternative water source and a stormwater management tool. Many studies have focused on the water-saving potential of these systems, but research into aspects that impact stormwater retention—such as demand patterns and climate change—is lacking. This paper investigates the short-term impact of demand on both water supply and stormwater management and examines future and potential performance over a longer time scale using climate change projections. To achieve this, data was collected from domestic rainwater harvesting systems in Broadhempston, UK, and used to create a yield-after-spillage model. The validation process showed that using constant demand as opposed to monitored data had little impact on accuracy. With regards to stormwater management, it was found that monitored households did not use all the non-potable available water, and that increasing their demand for this was the most effective way of increasing retention capacity based on the modelling study completed. Installing passive or active runoff control did not markedly improve performance. Passive systems reduced the outflow to greenfield runoff for the longest time, whereas active systems increased the outflow to a level substantially above roof runoff in the 30 largest events

    Quantifying the performance of dual-use rainwater harvesting systems

    Get PDF
    Rainwater harvesting systems in urban settings are increasingly relied upon to mitigate pluvial flooding on top of providing an additional water supply. Alternative designs have been proposed to support their dual use. Stormwater management performance is typically evaluated through long-term averages. However, long-term assessment is not aligned with the goal of attenuating the impacts of short duration high-intensity rainfall events. This paper contributes a framework for evaluating the dual-use performance of design alternatives. The framework incorporates a set of stormwater management metrics that provides a robust characterisation of performance during significant rainfall events. To the usual long-term volumetric retention metric, we add: 1) metrics that represent the total volume and duration above predevelopment (greenfield) runoff rates; and 2) robust peak outflow rate and retention efficiencies based on the long-term median of a representative sample of significant rainfall events. Our multi-criteria performance visualisations of alternative dual-use designs highlight the importance of carefully designing the forecast-based controlled release mechanisms built into active systems. This work has direct implications for design guidance standards, which we discuss

    Effect of vegetation treatment and water stress on evapotranspiration in bioretention systems

    Get PDF
    EvapotranspirationStormwater managementUrban green infrastructureBioretentionHydrological performanceSustainable Drainage Systems (SuDS

    The feasibility of domestic raintanks contributing to community-oriented urban flood resilience

    Get PDF
    This interdisciplinary study investigates the technical and social feasibility of developing a domestic raintank programme to increase urban flood resilience. Hydrological modelling of different types of tank was used to determine the advantages and disadvantages of different models in controlling runoff. Qualitative socio-cultural interviews with local people revealed that raintanks were broadly acceptable to the local community. However, interviews with representatives from flood authorities suggest that resource constraints and technocratic industry norms focused on physical flood risk mitigate against consideration of a raintank programme. Our research suggests that there are transformative advantages to a more community-oriented approach to flood resilience, particularly the potential to change the relationship between the public and flood authorities away from a traditional model that pictures the former as passive, towards a process of mutual learning and two-way communication. Our research illustrates that this is not merely a matter of ‘good practice’, but a shift that can produce new practical solutions that a technical perspective alone cannot reveal

    Evaluating the potential hydrological performance of a bioretention media with 100% recycled waste components

    Get PDF
    Bioretention systems are a popular type of Sustainable Drainage System (SuDS). However, their largest single component, the fill media, is often a non-sustainably sourced material. This study evaluates a bioretention fill media comprising 100% recycled waste components. The fill media components come from multiple waste streams, quarry waste from the construction sector, crushed glass and green waste compost from domestic waste, and sugar-beet washings from the food processing sector. The hydraulically important physical characteristics of the recycled fill media were evaluated against reported literature examples of bioretention fill media, alongside UK and international guidance documentation. The particle size distribution of the recycled fill media was found to be unlike that seen in the literature and was also not compliant with the UK’s CIRIA ’The SuDS Manual’ guidance (d≥6 mm = 45% vs. 0% target). However, this did not result in any additional non-compliance, with laboratory-derived saturated hydraulic conductivity (Ks=101 mm/h) and porosity (ϕ=44%) within recommended ranges (100≤Ks≤300 mm/h, ϕ>30%). SWMM was used to predict the performance of a bioretention system installed with the recycled fill media compared to UK guidance configured systems. It was found that the recycled fill media would have similar performance to a UK guidance compliant system, irrespective of its particle size distribution. Further work is required to validate the predicted performance of the recycled media

    Effect of vegetation treatment and water stress on evapotranspiration in bioretention systems

    Get PDF
    Evapotranspiration is a key hydrological process for reducing stormwater runoff in bioretention systems, regardless of their physical configuration. Understanding the volumes of stormwater that can be returned to the atmosphere via evapotranspiration is, therefore, a key consideration in the design of any bioretention system. This study establishes the evapotranspiration dynamics of three common, structurally different, bioretention vegetation treatments (an Amenity Grass mix, and mono-cultures of Deschampsia cespitosa and Iris sibirica) compared with an un-vegetated control using lab-scale column experiments. Via continuous mass and moisture loss data, observed evapotranspiration rates were compared with those predicted by the FAO-56 Penman–Monteith model for five 14-day dry periods during Spring 2021, Summer 2021, and Spring 2022. Soil moisture reductions over the 14-day trials led to reduced rates of evapotranspiration. This necessitated the use of a soil moisture extraction function alongside a crop coefficient to represent actual evapotranspiration from FAO-56 Penman–Monteith reference evapotranspiration estimates. Crop coefficients (Kc) varied between 0.65 and 2.91, with a value of 1.0 identified as a recommended default value in the absence of treatment-specific empirical data. A continuous hydrological model with Kc=1.0 and a loading ratio of 10:1 showed that evapotranspiration could account for between 1 and 12% of the annual water budget for a bioretention system located in the UK and Ireland, increasing to a maximum of 35% when using the highest Kc observed (2.91)

    Independent Validation of the SWMM Green Roof Module

    Get PDF
    Green roofs are a popular Sustainable Drainage Systems (SuDS) technology. They provide multiple benefits, amongst which the retention of rainfall and detention of runoff are of particular interest to stormwater engineers. The hydrological performance of green roofs has been represented in various models, including the Storm Water Management Model (SWMM). The latest version of SWMM includes a new LID green roof module, which makes it possible to model the hydrological performance of a green roof by directly defining the physical parameters of a green roof’s three layers. However, to date, no study has validated the capability of this module for representing the hydrological performance of an extensive green roof in response to actual rainfall events. In this study, data from a previously-monitored extensive green roof test bed has been utilised to validate the SWMM green roof module for both long-term (173 events over a year) and short-term (per-event) simulations. With only 0.357% difference between measured and modelled annual retention, the uncalibrated model provided good estimates of total annual retention, but the modelled runoff depths deviated significantly from the measured data at certain times (particularly during summer) in the year. Retention results improved (with the difference between modelled and measured annual retention decreasing to 0.169% and the Nash-Sutcliffe Model Efficiency (NSME) coefficient for per-event rainfall depth reaching 0.948) when reductions in actual evapotranspiration due to reduced substrate moisture availability during prolonged dry conditions were used to provide revised estimates of monthly ET. However, this aspect of the model’s performance is ultimately limited by the failure to account for the influence of substrate moisture on actual ET rates. With significant differences existing between measured and simulated runoff and NSME coefficients of below 0.5, the uncalibrated model failed to provide reasonable predictions of the green roof’s detention performance, although this was significantly improved through calibration. To precisely model the hydrological behaviour of an extensive green roof with a plastic board drainage layer, some of the modelling structures in SWMM green roof module require further refinement

    Implementing treat-to-target urate-lowering therapy during hospitalisations for gout flares.

    Get PDF
    OBJECTIVES: To evaluate a strategy designed to optimise care and increase uptake of urate-lowering therapy (ULT) during hospitalisations for gout flares. METHODS: We conducted a prospective cohort study to evaluate a strategy that combined optimal in-hospital gout management with a nurse-led, follow-up appointment, followed by handover to primary care. Outcomes, including ULT initiation, urate target attainment, and re-hospitalisation rates, were compared between patients hospitalised for flares in the 12 months post-implementation and a retrospective cohort of hospitalised patients from 12 months pre-implementation. RESULTS: 119 and 108 patients, respectively, were hospitalised for gout flares in the 12 months pre- and post-implementation. For patients with 6-month follow-up data available (n = 94 and n = 97, respectively), the proportion newly initiated on ULT increased from 49.2% pre-implementation to 92.3% post-implementation (age/sex-adjusted odds ratio (aOR) 11.5; 95% confidence interval (CI) 4.36-30.5; p < 0.001). After implementation, more patients achieved a serum urate ≤360 micromol/L within 6 months of discharge (10.6% pre-implementation vs. 26.8% post-implementation; aOR 3.04; 95% CI 1.36-6.78; p = 0.007). The proportion of patients re-hospitalised for flares was 14.9% pre-implementation vs. 9.3% post-implementation (aOR 0.53, 95% CI 0.22 to 1.32; p = 0.18). CONCLUSION: Over 90% of patients were initiated on ULT after implementing a strategy to optimise hospital gout care. Despite increased initiation of ULT during flares, recurrent hospitalisations were not more frequent following implementation. Significant relative improvements in urate target attainment were observed post-implementation; however, for the majority of hospitalised gout patients to achieve urate targets, closer primary-secondary care integration is still needed

    Comparing cost-effectiveness of surface water flood management interventions in a UK catchment

    Get PDF
    This is the final published version. Available from Wiley via the DOI in this record.Despite significant consequences caused by recent events, surface water flooding has historically been of lower priority relative to fluvial and coastal risks in UK flood management. Legislation and research proposes a variety of innovative interventions to address this; however, widespread application of these remains a challenge due to a number of institutional, economic, and technical barriers. This research applies a framework capable of fast and high-resolution assessment of intervention cost-effectiveness as an opportunity to improve available evidence and encourage uptake of interventions through analysing permutations of type, scale, and distribution in urban catchments. Fast assessment of many scenarios is achieved using a cellular automata flood model and a simplified representation of interventions. Conventional and green strategies are examined across a range of design standard and high-magnitude rainfall events in an urban catchment. Results indicate high-volume rainwater capture interventions demonstrate a significant reduction in estimated annual damage costs, and localised surface water drainage interventions exhibit high cost-effectiveness for damage reduction. Analysis of performance across a wide range of return periods enhances available evidence for option comparison decision support and provides a basis for future resilience assessment of interventions.Engineering and Physical Sciences Research Council (EPSRC

    Unsaturated 1D Hydrological Process and Modeling of Living Roof Media during Steady Rainfall

    No full text
    corecore