67 research outputs found
Copper complexes as a source of redox active MRI contrast agents
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility
Carotid Plaque Age Is a Feature of Plaque Stability Inversely Related to Levels of Plasma Insulin
C-declination curve (a result of the atomic bomb tests in the
1950s and 1960s) to determine the average biological age of carotid
plaques.C
content by accelerator mass spectrometry. The average plaque age (i.e.
formation time) was 9.6±3.3 years. All but two plaques had formed
within 5–15 years before surgery. Plaque age was not associated with
the chronological ages of the patients but was inversely related to plasma
insulin levels (p = 0.0014). Most plaques were
echo-lucent rather than echo-rich (2.24±0.97, range 1–5).
However, plaques in the lowest tercile of plaque age (most recently formed)
were characterized by further instability with a higher content of lipids
and macrophages (67.8±12.4 vs. 50.4±6.2,
p = 0.00005; 57.6±26.1 vs. 39.8±25.7,
p<0.0005, respectively), less collagen (45.3±6.1 vs.
51.1±9.8, p<0.05), and fewer smooth muscle cells (130±31
vs. 141±21, p<0.05) than plaques in the highest tercile.
Microarray analysis of plaques in the lowest tercile also showed increased
activity of genes involved in immune responses and oxidative
phosphorylation.C, can improve our understanding of carotid
plaque stability and therefore risk for clinical complications. Our results
also suggest that levels of plasma insulin might be involved in determining
carotid plaque age
Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density‑dependent manner
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed= transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory
- …