1,377 research outputs found

    Educational Psychology and the Dissemination of Evidence to Professional Practice

    Get PDF
    The purpose of this reflective practice paper is twofold: firstly, to review the concepts of evidence-based practice (EBP) and practice-based evidence (PBE) within the discipline of educational psychology and, secondly, to consider how research evidence can be effectively disseminated to inform educational psychologists’ (EPs’) professional practice. The unique contribution that EPs can make to the evidence base is described before exploring the extent to which EPs’ general practice is based on the best available scientific evidence. Finally, a dissemination plan is outlined that includes a discussion regarding the critical role of Implementation Science (Blase et al., 2012). The paper concludes that, although sparse, the existing literature suggests EPs are not basing their practice on well-evidenced techniques. Also, effective dissemination must include Implementation Science if sustainable changes are to be made at an organisational level

    State of the Art of Virtual Reality Simulation Technology and Its Applications in 2005

    Get PDF
    The School of Mining Engineering at the University of New South Wales (UNSW) has been developing immersive, interactive computer-based training simulators for a number of years with research funding provided by Coal Services (CS), the Australian Coal Association Research Program (ACARP) and the Australian Research Council (ARC). The virtual reality(VR) simulators are being developed to improve the effectiveness of training in the Australian coal mining industry with a view to enhancing health and safety. VR theatres have been established at UNSW and at the Newcastle Mines Rescue Station (NMRS).A range of experienced and inexperienced mining personnel has already had the opportunity to train in them. A capability in immersive, interactive virtual reality training has been established and the reaction to the new technology has been positive and confirmed the benefits to be gained in going to the next stage in developing this capability. Given the significant advances in computer technology that have occurred since this research was initiated at UNSW, it was considered wise to undertake a study of the ‘State of the Art of Virtual Reality Simulation Technology and Its Application in 2005’. This should enable nformed decisions to be made on technologies and techniques that could further enhance the simulators and give insight into how the existing VR capability at UNSW can be placed on a sustainable foundation. This Research Overview summarises the findings of the study. It recommends the continued development and testing of the simulators towards a system that presents the users with hi-fidelity imagery and function that is based on 3D models, developed using real mine plans, safety data and manufacturer’s drawings. The simulators should remain modular in design, such that equipment can be updated and added easily over time. Different mine training scenarios and models based on sound educational principles should be developed with major input from experienced mining industry personnel. The simulations that have been developed, that is, Self-Escape, Rib Stability and Sprains and Strains should also continue to be developed and refined. The study has confirmed that such simulations are a powerful visualisation and training tool for enhancing the understanding of mine safety procedures and operations in the coal mining industry. This Scoping Study was undertaken with funding provided from the JCB Health and Safety Trust administered by Coal Services Pty Limited. The support of the Trust and trustees is gratefully acknowledged. The contributors of information are also gratefully acknowledged

    Practical Continuous-Wave Intracavity Optical Parametric Oscillators

    Get PDF

    Speech and language difficulties in children with and without a family history of dyslexia

    Get PDF
    Comorbidity between SLI and dyslexia is well documented. Researchers have variously argued that dyslexia is a separate disorder from SLI, or that children with dyslexia show a subset of the difficulties shown in SLI. This study examines these hypotheses by assessing whether family history of dyslexia and speech and language difficulties are separable risk factors for literacy difficulties. Forty-six children with a family risk of dyslexia (FRD) and 36 children receiving speech therapy (SLT) were compared to 128 typically developing children. A substantial number (41.3%) of the children with FRD had received SLT. The nature of their difficulties did not differ in severity or form from those shown by the other children in SLT. However, both SLT and FRD were independent risk factors in predicting reading difficulties both concurrently and 6 months later. It is argued that the results are best explained in terms of Pennington's (2006) multiple deficits model

    Better communication research project : language and literacy attainment of pupils during early years and through KS2 : does teacher assessment at five provide a valid measure of children's current and future educational attainments?

    Get PDF
    It is well-established that language skills are amongst the best predictors of educational success. Consistent with this, findings from a population-based longitudinal study of parents and children in the UK indicate that language development at the age of two years predicts children’s performance on entering primary school. Moreover, children who enter school with poorly developed speech and language are at risk of literacy difficulties and educational underachievement is common in such children. Whatever the origin of children’s problems with language and communication, the poor educational attainment of children with language learning difficulties is an important concern for educational polic

    Environmental Epidemiology of Intestinal Schistosomiasis in Uganda: Population Dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with Observations on Natural Infections with Digenetic Trematodes

    Get PDF
    This study documented the population dynamics of Biomphalaria and associated natural infections with digenetic trematodes, along the shores of Lake Albert and Lake Victoria, recording local physicochemical factors. Over a two-and-a-half-year study period with monthly sampling, physicochemical factors were measured at 12 survey sites and all freshwater snails were collected. Retained Biomphalaria were subsequently monitored in laboratory aquaria for shedding trematode cercariae, which were classified as either human infective (Schistosoma mansoni) or nonhuman infective. The population dynamics of Biomphalaria differed by location and by lake and had positive relationship with pH (P < 0.001) in both lakes and negative relationship with conductivity (P = 0.04) in Lake Albert. Of the Biomphalaria collected in Lake Albert (N = 6,183), 8.9% were infected with digenetic trematodes of which 15.8% were shedding S. mansoni cercariae and 84.2% with nonhuman infective cercariae. In Lake Victoria, 2.1% of collected Biomphalaria (N = 13,172) were infected with digenetic trematodes with 13.9% shedding S. mansoni cercariae, 85.7% shedding nonhuman infective cercariae, and 0.4% of infected snails shedding both types of cercariae. Upon morphological identification, species of Biomphalaria infected included B. sudanica, B. pfeifferi, and B. stanleyi in Lake Albert and B. sudanica, B. pfeifferi, and B. choanomphala in Lake Victoria. The study found the physicochemical factors that influenced Biomphalaria population and infections. The number and extent of snails shedding S. mansoni cercariae illustrate the high risk of transmission within these lake settings. For better control of this disease, greater effort should be placed on reducing environmental contamination by improvement of local water sanitation and hygiene

    Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis.

    Get PDF
    11 p.-4 fig.-1 tab.Background: Increased circulating levels of endoglin+ endothelial microparticles (EMPs) have been identified in several cardiovascular disorders, related to severity. Endoglin is an auxilary receptor for transforming growth factor β (TGF-β) important in the regulation of vascular structure.Results: We quantified the number of microparticles in plasma of six patients with chronic thromboembolic pulmonary hypertension (CTEPH) and age- and sex-matched pulmonary embolic (PE) and healthy controls and investigated the role of microparticle endoglin in the regulation of pulmonary endothelial function in vitro. Results show significantly increased levels of endoglin+ EMPs in CTEPH plasma, compared to healthy and disease controls. Co-culture of human pulmonary endothelial cells with CTEPH microparticles increased intracellular levels of endoglin and enhanced TGF-β-induced angiogenesis and Smad1,5,8 phosphorylation in cells, without affecting BMPRII expression. In an in vitro model, we generated endothelium-derived MPs with enforced membrane localization of endoglin. Co-culture of these MPs with endothelial cells increased cellular endoglin content, improved cell survival and stimulated angiogenesis in a manner similar to the effects induced by overexpressed protein.Conclusions: Increased generation of endoglin+ EMPs in CTEPH is likely to represent a protective mechanism supporting endothelial cell survival and angiogenesis, set to counteract the effects of vascular occlusion and endothelial damage.This research was supported by a project grant (PG 11/13/28765) from the British Heart Foundation and by grants from Ministerio de Economia y Competitividad of Spain (SAF2013-43421-R to CB)Peer reviewe

    Evaluating the effectiveness of virtual reality learning in a mining context

    Get PDF
    UNSW’s Schools of Mining Engineering and Psychology have developed training modules for working at heights in above-ground mines. These modules implement best-available, evidence-based instructional methods combined with a range of immersion. The present paper describes a controlled evaluation of this approach for training novices in the safe operating procedure for a basic maintenance task. All participants received a sequence of instructions using a large-screen, computer-driven visual display accompanied by audio narration in one of three modes: (1) an animated depiction of the target procedure for which the pace of instruction was controlled by the individual participant (Animated + Individual, AI), (2) the same animated depiction but presented to a group with the pace controlled by the trainer (Animated + Group, AG), and (3) a sequence of static slide images presented to a group with trainer pacing (Static + Group, SG).During the training, the participants’ active processing of the information was encouraged by preceding each step of the instruction with a challenge question and feedback. Immediately following the module, the participants were given a multiple-choice test, which was repeated after a one-week retention interval. Across all three modes of presentation, the module yielded a high level of acquisition and retention. Among the three modes of presentation, the AI mode produced the highest level of test performance relative to both the AG and SG modes. When the participants were surveyed regarding their immersion in the virtual environment, they generally reported a moderate level of “presence,” with the animations (AI, AG) producing higher levels than the static images (SG). These positive outcomes provide a foundation for the further development and testing of additional modules combined with different levels of immersion aimed ultimately at economically producing personnel who can safely and proficiently apply their knowledge and skills in real mines

    Evaluation of underground virtual environment training: Is a mining simulation or conventional power point more effective?

    Get PDF
    UNSW’s Schools of Mining Engineering and Psychology have jointly developed high-fidelity simulations for training in the coal mining industry aimed at improving safety. These simulations have capitalised on advanced technology to move beyond replications of traditional class-room training and to implement best, evidence-based instructional practices. The present paper describes controlled experiments conducted as an initial, rigorous evaluation of the simulations by testing one small component. Specifically, a 3-D simulation of a coal mine was compared to a 2-D slide-based presentation in the acquisition, retention and transfer of a standardised operating procedure. Novices were trained to re-start an exhaust fan and were subsequently given a multiple-choice test immediately after training and then again after a retention interval of one week or more. In Experiment 1, training was conducted using the mining simulator (Group Sim) versus class-room slide presentations (Group PP).To maintain the participants’ active attention, each step of the procedure was followed by a question and feedback. Experiment 2 included a third condition in which participants in the mining simulator were asked to collaborate in generating answers to the in-training questions (Group Sim+). Two weeks after the retention test in Experiment 2, the top five participants in Groups Sim+ and PP provided a hands-on demonstration of the exhaust-fan procedure. Across experiments, training in the simulator tended to yield better test scores than the class-room training, particularly in the practical, hands-on test. The positive effect of the mine simulation on acquisition, retention, and transfer of the procedure provides a foundation for further simulation-based modules, which can replicated across mine sites and provide consistent training that does not depend on the individual trainer. This replication and consistency will decrease the cost of development and ownership to a small fraction of the cost of mining

    Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases

    Get PDF
    Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress–induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow
    corecore