2,376 research outputs found

    PKA Phosphorylation of Src Mediates cAMP\u27s Inhibition of Cell Growth via Rap1

    Full text link
    In fibrolast cells, cAMP antagonizes growth factor activation of ERKs and cell growth via PKA and the small P protein Rap1. We demonstrate here that PKA\u27s activation of Rap1 was mediated by the Rap1 guanine nucleotide exchange factor C3G, the adaptor Crk-L, the scaffold protein Cbl, and the tyrosine kinase Src. Src was required for cAMP activation of Rap1 and the inhibition of ERKs and cell growth. PKA activated Src both in vitro and in vivo by phosphorylation was required for cAMP\u27s activation of Src and Rap1, as well as cAMP\u27s inhibition of ERKs and cell proliferation. This study identifies an antiproliferative role for Src in the physiological regulation of cell growth by cAMP

    B2-Adrenergic Receptor Activates Extracellular Signal-regulated Kinases (ERKs) via the Small G Protein Rap1 and the Serine/Threonine Kinase B-Raf

    Full text link
    G protein-coupled receptors can induce cellular proliferation by stimulating the mitogen-activated protein (MAP) kinase cascade. Heterotrimeric G proteins are composed of both a and By subunits that can signal independently to diverse intracellular signaling pathways including those that activate MAP kinases. In this study, we examined the ability of isoproterenol, an agonist of the B2-adrenergic receptor (b2AR), to stimulate extracellular signal-regulated kinases (ERKs). Using HEK293 cells, which express endogenous b2AR, we show that isoproterenol stimulates ERKs via b2AR. This action of isoproterenol requires cAMP-dependent protein kinase and is insensitive to pertussis toxin, suggesting that Gas activation of cAMP-dependent protein kinase is required. Interestingly, b2AR activates both the small G proteins Rap1 and Ras, but only Rap1 is capable of coupling to Raf isoforms. b2AR inhibits the Ras-dependent activation of both Raf isoforms Raf-1 and B-Raf, whereas Rap1 activation by isoproterenol recruits and activates B-Raf. b2AR activation of ERKs is not blocked by expression of RasN17, an interfering mutant of Ras, but is blocked by expression of either RapN17 or Rap1GAP1, both of which interfere with Rap1 signaling. We propose that isoproterenol can activate ERKs via Rap1 and BRaf in these cells

    The incredible ULKs

    Get PDF
    Macroautophagy (commonly abbreviated as autophagy) is an evolutionary conserved lysosome-directed vesicular trafficking pathway in eukaryotic cells that mediates the lysosomal degradation of intracellular components. The cytoplasmic cargo is initially enclosed by a specific double membrane vesicle, termed the autophagosome. By this means, autophagy either helps to remove damaged organelles, long-lived proteins and protein aggregates, or serves as a recycling mechanism for molecular building blocks. Autophagy was once invented by unicellular organisms to compensate the fluctuating external supply of nutrients. In higher eukaryotes, it is strongly enhanced under various stress conditions, such as nutrient and growth factor deprivation or DNA damage. The serine/threonine kinase Atg1 was the first identified autophagy-related gene (ATG) product in yeast. The corresponding nematode homolog UNC-51, however, has additional neuronal functions. Vertebrate genomes finally encode five closely related kinases, of which UNC-51-like kinase 1 (Ulk1) and Ulk2 are both involved in the regulation of autophagy and further neuron-specific vesicular trafficking processes. This review will mainly focus on the vertebrate Ulk1/2-Atg13-FIP200 protein complex, its function in autophagy initiation, its evolutionary descent from the yeast Atg1-Atg13-Atg17 complex, as well as the additional non-autophagic functions of its components. Since the rapid nutrient- and stress-dependent cellular responses are mainly mediated by serine/threonine phosphorylation, it will summarize our current knowledge about the relevant upstream signaling pathways and the altering phosphorylation status within this complex during autophagy induction

    A Note on Scheduling Problems with Irregular Starting Time Costs

    Get PDF
    In [9], Maniezzo and Mingozzi study a project scheduling problem with irregular starting time costs. Starting from the assumption that its computational complexity status is open, they develop a branch-and-bound procedure, and identify special cases that are solvable in polynomial time. In this note, we review three previously established, related results which show that the general problem is solvable in polynomial time

    Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage

    Get PDF
    Many experimental studies focus on the physical damage mechanisms of short-term exposure to laser radiation. In the nanosecond (ns) pulse range, damage in the Retinal Pigment Epithelium (RPE) will most likely occur at threshold levels due to bubble formation at the surface of the absorbing melanosome. The energy uptake of the melanosomes is one key aspect in modeling the bubble formation and damage thresholds. This work presents a thermal finite volume model for the investigation of rising temperatures and the temperature distribution of irradiated melanosomes. The model takes the different geometries and thermal properties of melanosomes into account, such as the heat capacity and thermal conductivity of the heterogeneous absorbing melanosomes and the surrounding tissue. This is the first time the size and shape variations on the melanosomes‘ thermal behavior are considered. The calculations illustrate the effect of the geometry on the maximum surface temperature of the irradiated melanosome and the impact on the bubble formation threshold. A comparison between the calculated bubble formation thresholds and the RPE cell damage thresholds within a pulse range of 3 to 5000 ns leads to a mean deviation of = 22 mJ ∕ cm2 with a standard deviation of = 21 mJ ∕ cm2. The best results are achieved between the simulation and RPE cell damage thresholds for pulse durations close to the thermal confinement time of individual melanosomes

    State dependent dissociation of HERG channel inhibitors

    Get PDF
    BACKGROUND AND PURPOSE: Inhibition of HERG channels prolongs the ventricular action potential and the QT interval with the risk of torsade de pointes arrhythmias and sudden cardiac death. Many drugs induce greater inhibition of HERG channels when the cell membrane is depolarized frequently. The dependence of inhibition on the pulsing rate may yield different IC(50) values at different frequencies and thus affect the quantification of HERG channel block. We systematically compared the kinetics of HERG channel inhibition and recovery from block by 8 blockers at different frequencies. EXPERIMENTAL APPROACH: HERG channels were expressed heterologously in Xenopus oocytes and currents were measured with the two-electrode voltage clamp technique. KEY RESULTS: Frequency-dependent block was observed for amiodarone, cisapride, droperidol and haloperidol (group 1) whereas bepridil, domperidone, E-4031 and terfenadine (group 2) induced similar pulse-dependent block at all frequencies. With the group 1 compounds, HERG channels recovered from block in the presence of drug (recovery being voltage-dependent). No substantial recovery from block was observed with the second group of compounds. Washing out of bepridil, domperidone, E-4031 and terfenadine was substantially augmented by frequent pulsing. Mutation D540K in the HERG channel (which exhibits reopening at negative voltages) facilitated recovery from block by these compounds at −140 mV. CONCLUSION AND IMPLICATIONS: Drug molecules dissociate at different rates from open and closed HERG channels (‘use-dependent' dissociation). Our data suggest that apparently ‘trapped' drugs (group 2) dissociated from the open channel state whereas group 1 compounds dissociated from open and resting states
    corecore