2,498 research outputs found

    The Light Curve and Internal Magnetic Field of the Mode-Switching Pulsar PSR B0943+10

    Full text link
    A number of radio pulsars exhibit intriguing mode-switching behavior. Recent observations of PSR B0943+10 revealed correlated radio and X-ray mode switches, providing a new avenue for understanding this class of objects. The large X-ray pulse fraction observed during the radio quiet phase (Q mode) was previously interpreted as a result of changing obscuration of X-rays by dense magnetosphere plasma. We show that the large X-ray pulse fraction can be explained by including the beaming effect of a magnetic atmosphere, while remaining consistent with the dipole field geometry constrained by radio observations. We also explore a more extreme magnetic field configuration, where a magnetic dipole displaced from the center of the star produces two magnetic polar caps of different sizes and magnetic field strengths. These models are currently consistent with data in radio and X-rays and can be tested or constrained by future X-ray observations.Comment: 5 pages, 5 figures, submitted to ApJ

    Riboswitch identification using Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR)

    Get PDF
    In vitro selection of ligand-responsive ribozymes can identify rare, functional sequences from large libraries. While powerful, key caveats of this approach include lengthy and demanding experimental workflows; unpredictable experimental outcomes and unknown functionality of enriched sequences in vivo. To address the first of these limitations we developed Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). LigASERR is scalable, amenable to automation and requires less time to implement compared to alternative methods. To improve the predictability of experiments, we modelled the underlying selection process, predicting experimental outcomes based on sequence and population parameters. We applied this new methodology and model to the enrichment of a known, in vitro-selected sequence from a bespoke library. Prior to implementing selection, conditions were optimised and target sequence dynamics accurately predicted for the majority of the experiment. In addition to enriching the target sequence, we identified two new, theophylline-activated ribozymes. Notably, all three sequences yielded riboswitches functional in Escherichia coli, suggesting LigASERR and similar in vitro selection methods can be utilised for generating functional riboswitches in this organism

    Renormalization group theory for finite-size scaling in extreme statistics

    Full text link
    We present a renormalization group (RG) approach to explain universal features of extreme statistics, applied here to independent, identically distributed variables. The outlines of the theory have been described in a previous Letter, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.Comment: 15 pages, 8 figures, to appear in Phys. Rev.

    Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere

    Get PDF
    The problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fjørtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered

    Efeito de diferentes tecnologias de armazenamento na qualidade de maçãs.

    Get PDF
    O objetivo desse estudo foi avaliar as mudanças físico-químicas, sensoriais e moleculares associadas às condições de armazenamento e a relação dessas características com a perda de qualidade em maçãs

    The effect of a regional increase in ocean surface roughness on the tropospheric circulation: a GCM experiment

    Get PDF
    The sensitivity of the atmospheric circulation to an increase in ocean surface roughness in the Southern Hemisphere storm track is investigated in a paired general circulation model experiment. Such a change in sea roughness could be induced by ocean waves generated by storms. Two extended permanent-July runs are made. One with standard sea surface roughness, the other with ten times as a large surface roughness over open sea poleward of 40-degrees-S. The regional increase in ocean surface roughness significantly modifies the tropospheric circulation in the Southern Hemisphere. The strongest effect is the reduction of tropospheric winds (by 2 m/s or 100%) above the area with increased roughness. The poleward eddy momentum flux is reduced in the upper troposphere and the meridional eddy sensible heat flux is reduced in the lower troposphere. Zonal mean and eddy kinetic energy are consistently reduced

    The backbone of the climate network

    Full text link
    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis, and have ensured their robustness by intensive significance testing.Comment: 6 pages, 5 figure

    Extreme value distributions and Renormalization Group

    Get PDF
    In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. So far, only affine rescalings have been considered. We show, however, that more general rescalings are natural and lead to new limit distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The problem is approached using the language of Renormalization Group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of the differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.Comment: 16 pages, 5 figures. Final versio
    corecore