University of
<> Reading

Application of the direct Liapunov method
to the problem of symmetric stability in the
atmosphere

Article

Published Version

Cho, H.-R., Shepherd, T. G. and Vladimirov, V. A. (1993)
Application of the direct Liapunov method to the problem of
symmetric stability in the atmosphere. Journal of the
Atmospheric Sciences, 50 (6). pp. 822-836. ISSN 1520-0469
doi: https://doi.org/10.1175/1520-
0469(1993)050<0822:A0OTDLM>2.0.CO;2 Available at
http://centaur.reading.ac.uk/32917/

It is advisable to refer to the publisher’s version if you intend to cite from the

work.
Published version at: http://dx.doi.org/10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2

To link to this article DOI: http://dx.doi.org/10.1175/1520-
0469(1993)050<0822:A0TDLM>2.0.CO;2

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.



http://centaur.reading.ac.uk/licence

University of
<> Reading
www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://www.reading.ac.uk/centaur

822

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL, 50, No. 6

Application of the Direct Liapunov Method to the Problem
of Symmetric Stability in the Atmosphere

- H.-R. CHO AND T. G. SHEPHERD

Department of Physics, University of Toronto, Toronto, Ontario, Canada

V. A. YLADIMIROV
Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

(Manuscript received 16 October 1991, in final form 22 April 1992)

ABSTRACT

The problem of symmetric stability is examined within the context of the direct Liapunov met!:pd. The
sufficient conditions for stability derived by Fjortoft are shown to imply finite-amplitude, normed stability. This
finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of

disturbances to symmetrically unstable flows.

By employing a virial functional, the necessary conditions for instability implied by the stability theorem are
shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-
sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal ) symmetric instabilities.

The case of moist adiabatic systems is also considered.

1. Introduction

Studies of the problem of hydrodynamical stability
may be divided into two general classes. The first is
based on an explicit solution of the equations of mo-
tion, the spectral or normal-mode method being the
most celebrated such example. The second class, in
contrast, avoids a detailed consideration of the equa-
tions of motion and proceeds by the construction of
some functional of the total problem. An important
subset of this class is what is often referred to as the
direct Liapunov method, following the pioneering work
by Liapunov in 1892 on finite-dimensional mechanical
systems.

In the past 10 years or so, there have been consid-
erable advances in applications of the direct Liapunov
method to hydrodynamical stability problems, along
two different lines. The first consists of sufficient con-
ditions for stability, following the work of Fjertoft
(1950)and Arnol’d (1965, 1966). The second consists
of sufficient conditions for instability, generalizing the
classical results of analytical mechanics based on a virial
functional (Chetaev 1955; Moiseev and Rumyantsev
1965).

The Fjertoft-Amol’d stability method has been suc-
cessfully applied to a number of problems of geophys-
ical interest, including barotropic and baroclinic
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quasigeostrophic flow (e.g., Holm et al. 1985; McIntyre
and Shepherd 1987; Shepherd 1988a,b, 1989), strati-
fied equilibria ( Vladimirov 1985, 1986a), shallow-wa-
ter flow (Ripa 1983), and axisymmetric homogeneous
flow (Vladimirov 1986b; Szeri and Holmes 1988;
Shepherd 1991). Results based on the application of
the direct Liapunov method to the problem of insta-
bility have been, by contrast, rather limited (Ooyama
1966; Vladimirov 1989, 1990; Viadimirov and Ru-
myantsev 1990).

A classical problem in atmospheric dynamics is that
of symmetric stability. While the original interest in
the problem arose in the context of axisymmetric plan-
etary circulations (e.g., see Charney 1973), there has
been considerable recent interest in the possibility that
mesoscale rainbands may be a manifestation of (moist)
symmetric instability (e.g., Bennetts and Hoskins
1979). Applications of the direct Liapunov method to
the problem of symmetric stability go back to Fjertoft
(1950), who showed by a variational method that a
sufficient condition for symmetric stability of a basic
flow is static stability together with positivity of f
times the potential vorticity, and to Ooyama (1966),
who employed a virial functional to obtain a one-sided
estimate of the growth rate of unstable disturbances.

In this paper, we reexamine the problem of sym-
metric stability and obtain two main results. The first
is an extension of the Fjortoft ( 1950) stability theorem
to finite-amplitude disturbances, including explicit
bounds on the possible growth of unstable disturbances.
The second is a two-sided (upper and lower) estimate
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of the growth rate of symmetric instabilities, improving
on the results of Ooyama (1966).

The plan of the paper is as follows. In section 2, the
governing equations are described, and their Hamil-
tonian structure established. Then the stability of a
baroclinic basic flow is considered, and Fjertoft’s theo-
rem is recovered within the context of an energy-Cas-
imir (or pseudoenergy) stability analysis. These results
are extended to moist adiabatic (saturated) systems.
The finite-amplitude version of the stability theorem
is derived in section 3. In section 4, this finite-amplitude
stability theorem is used to obtain rigorous saturation
bounds on the growth of disturbances to symmetrically
unstable basic flows following the method of Shepherd
(1988a). These bounds are compared with parcel-based
estimates. The question of symmetric instability is also
the subject of section 5, which derives sufficient con-
ditions for instability and establishes two-sided esti-
mates of the growth rate. Finally in section 6, we briefly
consider the problem of the instability of a moist at-
mosphere with saturated ascent and unsaturated de-
scent. The paper concludes with a discussion.

2. Classical symmetric stability
a. Governing equations

We consider the nonhydrostatic, adiabatic, Boussi-
nesq equations on an f plane:

%_fv_——fj, (2.1a)
%’ +fu = 2’: (2.1b)
%’h—ﬁﬁ;—f,- (2.1¢)
Uy + v, + w, = 0, (2.1d)

—g—?=0. (2.1e)

The notation is standard: p is the pressure, p is a con-
stant reference density, 6 is the potential temperature,
65 is a constant reference potential temperature, fis
the constant Coriolis parameter, subscripts denote
partial derivatives, and D/Dt = 9/t + v-V.
We consider the system under so-called “symmetric”
conditions where all dynamical fields are independent
of y, so that all y derivatives drop out. Equations
(2.1a)-(2.1e) can then be cast in the form

Du
- = Tpx +Sm,

D1 (2.2a)

Dm
._—_—-0’

i (2.2b)
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Dw g0
S =-pr+2, 2.2
- P +00 (2.2¢)
U, +w, =0, (2.2d)

D8

— = 2.2
Di 0, (2.2¢)

where m = v + fx is the y component of absolute ve-
locity and p* = (p/po) + 3 > x? is a modified pressure.
The symmetry in y thus means that the system gains
a new Lagrangian invariant m, in addition to 6, and
m exerts a centrifugal body force in x just as 8 exerts
a gravitational body force in z.

In light of the nondivergent nature of the velocity
field in the x-z plane, it is convenient to introduce a
streamfunction ¥ defined by

U=y, w=—yy (2.3)

it follows that D/Dt = d/dt + d(¢, ), where 4(f, g)
= f,g, — fx&. is the two-dimensional Jacobian operator.
Also, the modified pressure may be eliminated by tak-
ing the curl of (2.2a,c), which yields a prognostic
equation for the vorticity w = u, — w,. With these
definitions, the complete set of nonlinear governing
equations reduces to

@ = -0y, @)+ d(m, fx) + a(o, -‘3’5) . (2.42)
0

m, = —98(y, m), 6,=-08(¢,0). (2.4bc)

Equations (2.4a)-(2.4c) are considered in a simply
connected domain D with the nonpenetrative bound-
ary condition

¢v=0 on 4D (2.4d)

if the boundary dD is at infinity then (2.4d) holds in
an appropriate limiting sense.

b. Hamiltonian structure

The system (2.4) is readily seen to be Hamiltonian,
as follows. First note that under the assumed boundary
condition, the dynamics described by (2.4) conserves
an “energy” integral

,7=ffb [% |V¢|2—mfx—%g—oz}dxdz. (2.5)

To establish the Hamiltonian structure of the dynam-
ics, it is necessary to evaluate the functional derivatives
of # with respect to w, m, and 6. To this end,

- ) _ _&
6;?’—f£) {V¢/ VoY — fxém b 60]dxdz

- ff {_ww — fxbm — Ew]arxarz, (2:6)
D bo

the second line following upon integration by parts
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under the presumed boundary condition on . It fol-
lows immediately from (2.6) that

¥ 4 gz
—fx, —=—=. . (27
S g T @D
It is now easy to verify that the dynamics (2.4) is
equivalently represented in the symplectic (Hamilton-
ian) form

o
=J—
ox ’

(2.8)

X;

with the identification

x=(w,m,0)7, (2.9a)

—d(w, -) —d(m, ) —a(, )
J=|-a(m, ) 0 0 . (2.9b)
—-3(8, -) 0 0

For further discussion of the symplectic representation
(2.8) in the fluid-dynamical context, one may refer to
Benjamin (1984), Salmon (1988), or Shepherd
(1990). Of course, merely casting the governing equa-
tions into the form (2.8) is not enough to establish
Hamiltonian structure; one must also verify certain
algebraic properties about the Poisson bracket induced
by J. In this case, however, the system is a straight-
forward generalization of 2D Boussinesq stratified flow
(obtained by removing m from the above representa-
tion), which has been extensively discussed by Ben-
jamin (1986). Hence, such detailed verification is un-
necessary.

In addition to the Hamiltonian (2.5), the system
(2.4) conserves a family of invariants of the form

e =fJ;) C(m, 0)dxdz (2.10)

for arbitrary functions C(», £). These are what are
known as Casimir invariants, since it is easily verified
that

e
e _ 0, (2.11)
ox
after using
6@ 6@ 8@
5—0, %-Cm, Eb‘—cg (2.12)

(subscripts denoting partial derivatives, as always). The
fact that @ is an invariant of the motion is also im-
mediately apparent from the fact that m and 6 are La-
grangian (or material ) invariants.

It may seem odd that the functional # used as the
Hamiltonian does not contain the usual y component
of kinetic energy, namely, 402 but rather —m/x; how-
ever, the two quantities differ by im? + 1 f2x2, the
first of which (when integrated over D) is a Casimir,
and the second of which is a constant (also a Casimir,
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of a trivial sort). Thus, the invariance of # is equivalent
to the invariance of the usual energy. [In any case it is
evident from (2.8) and (2.11) that the Hamiltonian is
only defined to within a Casimir.] This issue is dis-
cussed further in section 4.

¢. Disturbances to a baroclinic basic flow

We consider the problem of the stability to sym-
metric disturbances of a baroclinic basic flow

v=V(x,z), 6=0(x,z), u=0=w, (2.13)
in thermal wind balance:
v gab
—— 2.14
S 9z 6y dx ( )

The problem is approached in a very general manner
by using the Fjortoft-Arnol’d stability method based
on an energy—Casimir invariant constructed from (2.5)
and (2.10) (e.g., see Holm et al. 1985; Shepherd 1990,
section 6). Any stability result will therefore apply not
only to normal-mode disturbances but also to the con-
tinuous spectrum. It will also turn out that the result
is immediately generalizable to finite amplitude.

The goal is to establish the convexity of the func-
tional # + € in the vicinity of the steady basic flow
(V, ©). To this end, we first choose the arbitrary func-
tion C in (2.10) so that the basic flow is a conditional
extremum of # + @, namely, so that

b _ o6

7 0x ox

when evaluated at the basic state (2.13). [ This is always

possible since the basic state is presumed to be steady;

e.g., see Shepherd (1990, section 5).] Using (2.7) and

(2.12), it follows that the appropriate choice of C must
satisfy

(2.15)

QWﬁFﬂ,%M®=%,
0

where M = V + fx. To determine whether the basic

flow is a true extremum, we examine the second vari-
ation

2 o _ 2 2
6(# + @) fL{|V51//| + Cpm(om)

(2.16)

+ 2C,06mdf + Cyp(80)* } dxdz. (2.17)

Now, the kinetic energy part of (2.17) is evidently pos-
itive definite, while the remaining terms are also pos-
itive definite if

Com>0, Cgp>0, (2.18a,b)
and
ComCos — (Cr)* > 0 (2.19)

when evaluated at the basic flow. Using the relations
(2.16) and noting that x and z can in general be re-
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garded as functions of M and 0, these conditions take
the form

x g oz
faM> 0, e a@>°’ (2.20a,b)
and )
x g oz %_& 9z fg| 0(x,z)
S art,00 ' 00,90 6, |acr ey | %
(2.21)

[Condition (2.21) also guarantees that the coordinate
transformation from (A, ®) to (x, z) is nonsingular.]
Thus, whenever the basic flow satisfies (2.20) and
(2.21), it follows that the functional 62(% + @) is
positive definite for arbitrary disturbances ém, 60. In-
sofar as 82(% + @) is an exact invariant of the linear-
ized equations, this establishes stability within the
framework of the linearized system.

Conditions (2.20) and (2.21) have a clear physical
interpretation: (2.20a,b) establish inertial and static
stability, respectively, while (2.21) is equivalent to f
times the basic-flow potential vorticity Q being every-
where positive; namely,

_ - oV\96 _ .9V 38
fQ:fZ'Ve—f(er ax)az U ears
_ /9, )

’f| (x, 2)

where Z is the basic-flow absolute vorticity. Introducing
the notation { = f+ V,, the vertical component of Z,
and N2 = g0®,/6,, the square of the Brunt-Viisil fre-
quency, one has

>0, (2.22)

PR VAR O R

after using (2.14). Thus, condition (2.22) is equiva-
lently represented as

2 2
L (f &) (2.23)

. _N*_ f
Ri 72 > c > 0,
where Ri is the Richardson number. In the special case
V="V(z),(2.24) reduces to Ri > 1.

Hence we have recovered the sufficient conditions
for symmetric stability derived by Fjertoft (1950),
Stone (1966), and Hoskins (1974). While the latter
two references considered only normal-mode distur-
bances, Fjertoft’s analysis treated small-amplitude dis-
turbances of arbitrary form, as here. It is apparent that
the stability criteria are based at root on the global
invariants of the problem.

(2.24)

d. Moist adiabatic systems

In a moist adiabatic (saturated) process, the total
energy of the system is conserved if the latent heat
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stored in water vapor is considered as a form of poten-
tial energy. We therefore expect the above theory to be
applicable to such a system. The governing equations
are as given by (2.4), except that (2.4c) is replaced by
conservation of the equivalent potential temperature
f.:

O = — (Y, be).

Note that 8, = 6,.(8, z).
We take as the Hamiltonian

(2.25)

7 = ff [% |V¥12 — mfx — h(b., z)]dxdz, (2.26)
D

with the function /4 (representing the negative of the
gravitational plus latent potential energy) satisfying the

relation
oh gz
esan | = 05 P E 2.27
6(0 806) 8( 00) (2.27)
equivalently
*h g 80/9x :
== . 2.28
0z986, 0y 90./dx ( )

It is easy to verify that the governing equations for the
moist adiabatic system are recovered from the sym-
plectic form (2.8) with the identification

x=(w,m,8,)", (2.29a)
—0(w, *) —ad(m, ) —a(b,, )
J=|-d(m, *) 0 0 .
—-a(b,, *) 0 0
(2.29b)

The Casimir invariants are likewise of the form

@ = fj;) C(m, 8.)dxdz (2.30)

for arbitrary functions C(7, £).
Following the stability analysis of the previous sub-
section, this case yields

dh
Co, (M, 0,) = —,
0,( e) a @e
where 0, is the equivalent potential temperature of the
basic state, and the partial derivative of # is taken at
constant z. Stability of the basic state may be seen to
follow provided

Cn(M,0,) =[x, (2.31)

Ph\_ % oz
302 | ~ 3200, 90,
(2.32a,b)

ox
Com = f:?—]l_l> 0, (Cﬂeﬁe -
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and
3°h
Cmm( Cﬁ,de - W) - (Cmde)z
. 0%h | ax,z2)
= fé‘zé)@e 3(M. 0,) >0. (2.33)

Now, from (2.28) together with the fact that 8, = 6,.(9,
z) and 40,/40 > 0, it is clear that 3%4/8290, > O;
hence, the stability conditions (2.32b) and (2.33)
amount to static stability and positive (moist) equiv-
alent potential vorticity (for /> 0), as shown previously
by Bennetts and Hoskins (1979) for the special case
of normal-mode disturbances. -

3. Nonlinear symmetric stability

The nature of the analysis performed above shows
that the problem of the stability of a baroclinic jet to
symmetric disturbances is in many ways analogous to
the problem of the stability of a stably stratified resting
state (Vladimirov 1987). This makes a certain amount
of physical sense, as symmetric disturbances do not
feel the vertical shear in the jet directly but only indi-
rectly via the associated lateral potential-temperature
gradient. It also means that the linearized result is llkely
to lead to a nonlinéar stability theorem.

We thus assume that the formal stability criteria
(2.20) and (2.21) are satisfied and seek an explicit
demonstration of nonlinear stability. The problem in
this context is to find an exact disturbance invariant
that can be sandwiched between disturbance norms.
The obvious candidate is Z + @ itself, less its value at
the basic state, namely

A=(#+ C)|w, m, 0] — (& + C)[0, M, 9].

(3.1)
By choosing @ according to (2.15) it follows that A is
of at least quadratic order in disturbance amplitude in
the small-amplitude limit. It is also an exact finite-am-
plitude invariant of the dynamics, since each term in

(3.1) is itself an invariant.
Writing the disturbed flow as

m=M+m', 6=0+60, (3.2)

w =,

with the primed variables not assumed to be of small
amplitude, and using (2.16), A takes the form

.ﬂ=ff {% VY |2+ C(M + m', © + 0')
D .

—C(M,0)— Cpn(M,0)m' — C(M, @)0’]

X dxdz. (3.3)

Taylor’s remainder theorem implies that at each point
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in space there exists some 71 € (M, M + m’) and 8
€ (8, © + 6') such that
I=C(M+m,0+60)-C(M,0)— Cnh(M,O)m

~ CA M, ©)8" = 3 { Cpum(i, B

+ 2Ce( 171, )M 0" + Coo( 11, 9)0'2}. (3.4)
It is straightforward to verify that, in light of (2.18),
the quadratic form (3.4) may be bounded from above
and below according to

~ (7] .
21<(c,,,,,,+—° |c,,,,,|)m2
ng

(C,,,, +— |C,,,,,|)0’2 (3.5a)

N [7) -
21> (Cmm -2 !Cmo')mz
nyo

+ (C‘ea—

where the tilde indicates that the function is evaluated
at (m, 0), and my is some arbitrary positive parameter
with the dimensions of m, to be chosen later.

Now, using the usual rules for transforming partial
derivatives, together w1th the relations (2.16) and
(2.22), we have

T lc‘mol)o'z, (3.5b)
0

cmm=f%’;=é%%, (3.6a)
Coo = ég—g - éi‘f (3.6b)
UL VLT

=%%3__0—()%‘;2. (3.6d)

Without serious loss of generality we assume /0, > 0,
corresponding to V, > 0; since fQ > 0 by hypothesis,
this implies that C,,,; < 0. Substituting (3.6) into (3.5)
then yields

S 96 S oM\
21<(Qaz+moQazm
g oM moga(-) 2
= —— 2 ' 7
(a5 g o)™ BT
S0 fo, oM\ ,
21/(Qaz moQ 3z )"

6 HAm _MSsS TP g2
+(00Q - %an)a , (3.7b)
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it being understood that the various basic-flow func-
tions are evaluated at some (#t, ). If one now makes
the choice my = g/ N (possibly a function of x and z),
then (3.7) reduce to the compact forms

2 2
<2 e 5]

(3.8a)

N (O AN T S AN
21=70 {(1 N) 2+(f N)Nzozoz}‘

(3.8b)

We now use the inequalities (3.8a) and (3.8b) to
obtain a priori estimates (upper and lower bounds) on
A. Given some basic flow satisfying (2.20) and (2.21),
suppose constants ¢~, ¢* exist such that

2
M min[(l - %) R (S - Kf)} =c¢” >0, (3.9a)

40 S N
f00N2 V.\ (¢ TV, <ot
w0 |1 5) R <=

(3.9b)

[ This is actually somewhat more restrictive than (2.20),
(2.21).] Now, the basic-flow quantities in (3.8a) and
(3.8b) are evaluated at some unknown values of 7
E(M,M+ n')and 6 € (0, O + ). If the disturbance
is “natural” in the sense that no new values of m and
6 are introduced (recall that they are Lagrangian in-
variants), then the inequalities (3.9) are sufficient to
bound the expressions in (3.8a) and (3.8b). If the dis-
turbance does introduce values of m and 8 outside the
range of M and O, then the basic-flow functional re-
lations may be arbitrarily extended to cover those new
values in such a way as to satisfy (3.9) (cf. Arnol’d
1966). Either way, the estimates

+ 2
ff{ |VY'|% + (m’2+N§02 2)]dxdz
(3.10a)
- 2
A>”[ VY12 + ( m?+ ]V—g;070'2)}dxdz
0
(3.10b)

are obtained. This essentially establishes normed sta-
bility. To demonstrate this fact explicitly, define the
disturbance norm ||x’[|, by

iz = [ [ Lo} (me s 5 07)]

X dxdz, (3.11)

with AE[c™, c*]. Then ||x’||, at any time 7 is bounded
in terms of its initial value according to
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Ix'(e) 1%

Aff[—lvw (

A
X dxdz<—.>4(t) = —:

A 1 ' C_ 12
SFIL[E IV¥'1* + 3 ( N2000 )](0)

X dxdz < Z—_ Ix'(0)3.

N202 2)](‘)

(3.12)

The chain of inequalities (3.12) establishes that the
disturbance “amplification factor,” as measured in the
norm defined by (3.11), is bounded by (c*/c™)!/?,
with ¢* and ¢~ chosen so as to satisfy (3.9). Note that
if O = 0 somewhere in the basic flow, the factor (¢*/
¢™)!/? diverges and normed stability is lost.

In the special case where V = V(z), { = f, and we

may take
V
(1 + =2

+ N)max Ril/_2 +1
£ - =—Tr—. (3.13)
C 1 _K{ le/in_ 1

N min

As expected, the maximum amplification is seen to
diverge as Ripyin = 1.

It is clear from the nature of the above analysis that
the stability theorem for moist adiabatic systems may
also be extended to finite amplitude, although the de-
tails concerning the amplification factor will be some-
what more complicated.

4. Nonlinear saturation of symmetric instability
a. General theory

In this section we consider the following problem.
Given an infinitesimal disturbance to some unstable
steady flow, can a nontrivial upper bound be obtained
on the saturation amplitude of the instability? This
question is addressed following the method of Shepherd
(1988a), using the nonlinear stability theorem (3.12).

Thus, the initial condition of the system (2.4) takes
the form
m(0) =

m'® + m(l), g(o) =90 4 9(1)’

o(0) = o'V, (4.1)

where (m(?9, 8©) is some steady state that is known
to be unstable, and the initial perturbation (m‘V, § (1),
»'1) is of infinitesimal amplitude. ( The restriction to
initially infinitesimal disturbances is not necessary, but
it represents an important subclass of such problems.)
We now consider the initial condition (4.1) as a (finite-
amplitude ) disturbance to some stable basic flow (M,
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©), as in (3.2). The basic flow is completely arbitrary
apart from the fact that it is presumed to satisfy (3.9)
for some constants ¢*, ¢~ (which are then functionals
of the choice of the basic flow). For any such choice
of a stable basic flow, the inequality (3.12) then pro-
vides an upper bound on the disturbance norm (3.11)
in terms of its initial value.

What we seek is an upper bound on the perturbation
amplitude, and the disturbance norm (3.11) is not a
suitable measure of this since it depends on the choice
of the stable basic flow (M, ©). An unambiguous es-
timate of perturbation amplitude, however, is provided
by the kinetic energy of the motion in the x-z plane,
and in this respect we have the obvious inequality

ffD% | V¥ |2(¢)dxdz

=IL% IV 12()dxdz < X' ()13, (4.2)

[Recall that the primed quantities are departures from
the basic flow (M, ©), as in (3.2), and ¥ = 0.] Com-
bining (4.2) with (3. 12) yields (upon taking A = ¢7)

[ 3190wz < ff[ I9912(0)

+ —( m*(0) + = 0’2(0))]dxdz

2 N202
= IL%{(’m(O) —
+ O0(a), (4.3)

where a < | is some measure of the initial perturbation
amplitude; to get to the final line of (4.3), the fact that

¥'(0) = O(a), m'(0) =m® — M+ 0(a),
0'(0) =0 -0+ O(a) (44)

has been used. The inequality (4.3) represents a rig-
orous upper bound on the saturation amplitude of the
instability for any choice of a stable basic flow, the
right-hand side of which is a functional of the basic
flow (including ¢* and N?). One may therefore con-
sider the optimization problem of minimizing the right-
hand side of (4.3) in order to obtain the tightest (i.e.,
most constraining) upper bound.

N92 (89 — @)Z]dxdz
0

b. Example: pure baroclinic flow

To make the above theory concrete, we consider the
example of a pure baroclinic flow
v = N(1 + €)z,
8N2 6N
OoN” . BoNS
g 4

90 =

(1+e)x, (4.5)

where N is the (constant) Brunt-Viisili frequency of
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the initial flow (4.5). The problem is considered in the
rectangular domain

[\‘

- —<z<.
2 2SS
For the flow (4.5), Ri = 1/(1 + €)?, so we expect
instability when the ‘“‘supercriticality” parameter e is
positive.

Now introduce a basic flow defined by

(4.6)

L H H
-y S<x<7

V=N(1-28)z,
\72
o= (1+ )z+ﬂ(1 —d)x, (4.7)
with static stability given by
N?=(1+ v)N2. (4.8)

The basic flow (4.7) is stable to symmetric disturbances
provided

(1+7v)
(1-29)*

Using (4.4), (4.5), and (4.7), the initial disturbance
fields are given (in the limit ¢ = 0) by

m'(0) = N(e + 8)z,
NS
g

Ri = >le(1-80)2<(1+7v). (49)

T2
#'(0) = (e + B)x—o—N—'yz (4.10)
Then substituting (4.10) into the right-hand side of

(4.3) leads to the bound
” L ivy |2 (t)dxdz < L HLc {NZHZ
D2 24

X [(e+ 82+ 2(‘—”—)—]. (4.11)
) Tt

+ 2
]
In order to determine c* in terms of the basic-flow
parameters, note from (2.23) that the basic-flow po-
tential vorticity takes the form

f00N2( (1—6)2)
= 1 - ; 12
o a+ ) (4.12)
whence using (3.9), one may take
1/2 _
At FA+y) (-8 (4.13)

v+ 6(2—9)

The goal now is to minimize the right-hand side of the
expression (4.11), using (4.13), over all values of &
and + satisfying (4.9).

Consider first the bound that is obtained by adjusting
only the vertical wind shear and not the static stability;
that is, with v = 0 and 0 kept free. In that case c*
= 1/46, and the right-hand side of (4.11) takes the form

(e + 8)?

5 (N°H? + f2L%).

1
53 HL (4.14)
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The expression (4.14) is minimized for § = ¢, taking
the value
%HL(NZHZ + f2L%)e (4.15)

The rigorous upper bound represented by (4.15) im-
plies that the saturation amplitude of a symmetric in-
stability is bounded asymptotically by the square root
of the supercriticality € as ¢ = 0. This parallels the case
of barotropic instability (Shepherd 1988a, section 5).
It is a valid bound provided (4.9) holds, which is true
so long as € < 2.

Consider next the bound that is obtained by adjust-
ing only the static stability and not the wind shear, that
is, with § = —e¢ and + kept free. In that case,

st a + 1)1 +¢)
v — €2+ ¢€) ’
and the right-hand side of (4.11) takes the form
I+ +A+NPA+ 6 7
y—e2+e) L+
(4.17)

Ideally one should try to minimize (4.17) over all val-
ues of v consistent with (4.9), that is, for all

(4.16)

1
ﬁHL

v > (2 + €). (4.18)

The expression (4.17) is a little awkward to manipulate
directly, however, because of the factor (1 + v)!/2. But
since v > O for all v satisfying (4.18)—recall that
> 0 by hypothesis—it follows that (1 + v)!/? < (1
+ %), and hence the upper bound (4.17) is itself
bounded by

1 I+ +A+yU+e) o ¥

24HL v—e2+¢) 1+~
I B
= — LN ———, .
24H Y2+ (4.19)

The expression (4.19) is minimized for vy = 2¢(2 + ¢),
the latter condition evidently satisfying (4.18), and
takes the value

éH3L]\72e(2 + )2, (4.20)
As with (4.15), the bound (4.20) demonstrates that
for small ¢, the saturation amplitude of the instability
is bounded asymptotically by the square root of ¢ as
e—> 0.

It is clear that for f2L2 > N2H?, the bound (4.20)
is significantly smaller than the bound (4.15); while
for L% < N?H?, (4.15) is smaller than (4.20) by a
factor of at least 4 (limiting to 4 as e — 0). In general,
the bound (4.20) is smaller than (4.15) whenever

2 L2
f— >3 + 4e + 2.

i (4.21)
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One could presumably find even better (i.e, more con-
straining) bounds by allowing both é and v to vary
simultaneously in the minimization calculation. But
the algebraic complexity of such a calculation is suf-
ficiently daunting that it does not seem worth the effort
in the present context.

It is of interest to compare the bounds (4.15) and
(4.20) with general upper bounds such as the total
amount of energy in the system. In this regard the
Hamiltonian (2.5) is not the appropriate quantity to
consider, since it is not positive definite [and in fact is
negative for the initial condition (4.5)]. Instead, we
note that

_ =l l,p_lea
mfx Svi—sm 2f X (4.22)
and
fgz _1(6g -\ 1 g ., 1.,
Bo 2(001\7 ) 2N’ TN
(4.23)

substituting these expressions into (2.5) yields

1 g’ N
)?’=6—sz[m2+f2x2+0%N202+N222]

X dxdz, (4.24)
where
_ 1 2, 2, (08 & ’
é fL2[|V¢| +v +(001\7 Nz) dxdz.
(4.25)

The integral in (4.24) is seen to be a Casimir invariant,
which means that & is also invariant. Since it is also
positive definite, it serves as a suitable measure of the
energy of the system. Evidently we have the immediate
upper bound,

ffD% |Vy|2dxdz < €, (4.26)

and the bounds obtained from (4.11) can only be con-
sidered nontrivial if they are less than &.

For the initial condition (4.5), it is straightforward
to verify that

6 = % HL(N2H? + f2L2)(1 + €)%, (4.27)

This is larger than (4.15) for all € < 1; therefore, for
this range of ¢ the bound (4.15) provides a nontrivial
constraint on the saturation amplitude. On the other
hand, (4.27) is larger than (4.20) for all ¢ such that

2 +e)? 1 ( f2L?

<2 +W)

(1+¢)? 4 (4.28)
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Introducing the parameter
f2 L2
= v

the bounds (4.15), (4.20), and (4.27) may be com-
bined together to yield the rigorous bound

M

f f U\oy|2dxdz < L H3LN?F(e, p), (4.29a)
D2 24 .

where
41 +pe, 1+ pu<(2+e)? and e<|1
462+ €)%, 1 + = (2 +¢)? and
462+ e)*(1+e)2<1+4p
(1 + €)2(1 + p), otherwise.

F(e, )=

(4.29b)

This is a major result of this section.

c. Comparison with heuristic saturation estimates

The inequality (4.29) obtained above represents a
fully rigorous, nonlinear upper bound on the kinetic
energy of a symmetric disturbance to the unstable flow
(4.5). In particular, there has been no assumption
made as to the nature of the equilibrated state—if in-
deed one even exists. This result may be contrasted
with heuristic saturation estimates based on physical
presuppositions concerning the behavior of fluid par-
cels undergoing symmetric instability (Emanuel 1983).

For example, one may estimate the amount of avail-
able potential energy released by slantwise convection
if one assumes that the parcels act to mix 6 along m

W LU L AW AW
volb oy v
ViV by Ly
_Hl a ybyu by vy
2 L L
] x5z
—_— 0)
_— ,?,(0)
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surfaces. This assumption is appropriate in the non-
hydrostatic limit u > 1 (i.e., the 8 surfaces slope steeply
compared to the aspect ratio of the domain). For the
unstable flow (4.5), the initial @ distribution given by
6 ©(x, z) is then presumed to evolve to a new distri-
bution

8(x, z) = [N(1 + )z + fx] 9‘;—N(1 +e€), (4.30)

whose isopleths are parallel to the m® surfaces implied
by (4.5) and whose value on each m'® surface equals
the mean value of 8 (® along that surface: §? = ¢(®
for z = 0 (see Fig. 1). The available potential energy
released thereby 1s given by

f (89— 0)dxaz
D Vo

= ff N(1 + €)* — 1)z2dxdz
D
= S HLN[(1 + * — 1]
= é HLN?%(2 + ¢). (4.31)

This estimate is similar to the rigorous bound (4.20)—
which is the relevant one for u > 1—but is smaller by
afactor of 2(2 + €), that is, by a factor of 4 in the limit
e— 0.

It should be emphasized that the expressions (4.20)
and (4.31) are really quite complementary. The
expression (4.31) builds in some mathematical as-
sumptions based on physical reasoning in order to ob-

=

—_—
/
/
/
/
/

FIG. 1. Sketch of 82 and m'® isopleths for the unstable basic state (4.5). (a) The nonhydrostatic
limit ¢ > 1; in this case mixing of 8 along m®-surfaces leads to a final distribution ¢ 7 such
that 897 = 8@ at z = 0. (b) The hydrostatic limit x < 1; in this case mixing of m(® along §*-
surfaces leads to a final distribution m” such that m? = m® at x = 0.
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tain an estimate of the saturation amplitude of the in-
stability; however, there is nothing to prevent the ki-
netic energy from exceeding that estimate. In contrast,
the expression (4.20) is a rigorous upper bound on the
saturation amplitude, obtained by manipulation of the
global invariants of the fully nonlinear equations;
however, there is nothing to ensure that the kinetic
energy will come anywhere close to this upper bound.
So the upper bound (4.20) provides a rigorous under-
pinning for the estimate (4.31), while the estimate
(4.31) suggests that the upper bound (4.20) should not
be a gross overestimate of the actual saturation am-
plitude. This sort of complementarity is reminiscent
of that between saturation bounds and equilibration
estimates in barotropic and quasigeostrophic baroclinic
instability, which typically also differ by a factor of 4
(Shepherd 1988a, section 7.3; 1989, section 5).

On the other hand, in the hydrostatic limit u < 1
one expects changes in 8 to be negligible, and it is ap-
propriate to estimate the amount of centrifugal poten-
tial energy released by slantwise convection by assum-
ing that the parcels act to mix m along # surfaces. For
the unstable flow (4.5), the initial m distribution given
by m®(x, z) is presumed to evolve to a new distri-
bution

m(x, z) = [Nz + f(1 + e)x](1 +¢), (4.32)
whose isopleths are parallel to the 8% surfaces given
by (4.5) and whose value on each 8 surface equals
the mean value of m® along that surface: m"? = m®
for x = 0 (see Fig. 1). The centrifugal potential energy
released thereby is given by

f L Fx(m — m®)dxdz
= foz[(l + ¢)? — 1]x?dxdz
= éHL3f2[(1 +e)? - 1]
= .IIEHL3f26(2 +€). (4.33)

The relevant rigorous upper bound when u < 1 isgiven
by (4.15), which is well approximated in this limit by
+H? LN?%. The heuristic estimate (4.33) is asymptoti-
cally smaller than this by a factor of u, which suggests
that the bound (4.15) may be a considerable overes-
timate of the saturation amplitude in the hydrostatic
limit g < 1.

To obtain parcel-based estimates in the intermediate
regime, p = O( 1) is difficult, due to a lack of knowledge
about the slope of the parcel trajectories. In contrast,
the upper bound (4.29) is rigorously valid throughout
this regime.
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5. A priori estimates of symmetric instability
a. Linearized equations

In this section we consider the problem of the insta-
bility of the basic flow (2.13) to infinitesimal distur-
bances. It is convenient to introduce the Lagrange dis-
placement field (£, 5) in the x-z plane defined by
(Chandrasekhar 1970)

&=u, £x+772=0- (5.1)

Integrating the linearized form of (2.2b) and (2.2¢) in
time and setting the functions of integration to zero
(this amounts to assuming that the disturbance consists
only of a rearrangement of the fluid particles) leads to

0'=—£0,—70,, m=—tM,—q9M,. (52ab)

Using (5.1), (5.2a), and, (5.2b), the linearized form
of (2.2a) and (2.2c) may be written as

771=W,

§u = —DX — Ryt — Ry, (5.3a)
N = _P;‘ - RnEE - -R-rmn’ (5-3b)
where
M, M,
(REE RE") i (5.4)
RnE Rvm £ 0, g 0,
o 6o

Note that the above tensor is symmetric by virtue of
the thermal wind relation (2.14). The equations (5.1)
and (5.3) are considered together with the nonpene-
trative boundary condition

(£,7)n=0 on éD, (5.5)

where n is the unit outward normal. [As with (5.2),
the derivation of (5.5) from (2.4d) involves setting the
functions of integration to zero.] The problem defined

above conserves an energy integral, namely,
E=FH+P=0, (5.6)

where

H = ffb % (u? + w?)dxdz, (5.72)

P= f L%(R&gz + 2Reoén + Ryn*)dxdz, (5.7b)

and the dot denotes the time derivative. It may be ver-
ified that the energy defined by (5.7a) and (5.7b) is
consistent with the expression (2.17) with ém = m/,
88 = 0', VoY = (—w, u), after using (5.2a) and (5.2b).

b. Virial functional

A mean-square measure (norm) of disturbances is
introduced according to
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M= fL % (62 + n¥)dxdz,

whose time derivative is the virial functional (Chan-
drasekhar 1970)

W=umM= fL(ué + wy)dxdz.

(5.8)

(5.9)
Using the equations of motion together with the fact
that R;, = R,;, it may be shown that

Mo=W=2H - P)=4% - 26; (5.10)
this is known as the virial equality (Chandrasekhar
1970).
¢. Main inequality

At this point all the relevant information is contained
in the two equalities (5.6) and (5.10). To construct
the Liapunov functional, (5.10) is multiplied by an
arbitrary constant A and the result subtracted from
(5.6); after some manipulation this yields

6, =206, — 4NH,, (5.11)
where
(g)\ = 7{)\ + 7))‘,

Fr=H — AN+ M

— || Liu—ne)? + (w— An)?ydxdz. (5.12c)
. D2

Now suppose that A > 0. Then, since %, is evidently
non-negative, it follows from (5.11) that

Pr=P + NM, (5.12ab)

&, < 2\, (5.13)
which implies the main inequality
Ex(1) < 6,(0)e?, (5.14)

It must be emphasized that (5.14) is valid for any so-
lution of the defined problem (5.1), (5.3), and (5.5)
and for any positive value of A. In particular, no re-
striction has been placed on the sign of the potential
energy functional . The monotonic change in &) im-
plied by (5.14) in the case &, < 0 suggests that it may
be used as a Liapunov functional in the instability
problem.
It follows from (5.12) and (5.14) that

P(t) < 6x(0)e®™, (5.15)
d. Estimate from below of increase in disturbance
amplitude

Now we suppose that the stability criteria (2.18),
(2.19) do not hold; it follows that a displacement field
(£, n) exists for which

P <0. (5.16)
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We may then choose an initial displacement (£, n) sat-
isfying (5.16) such that 2 (0) < 0. We also choose the
initial velocity (u#, w) such that #(0) < |P(0)],
whence &(0) < 0. Now, according to the definition
(5.12),

6x(0) = 6(0) — AM(0) + 2A%M(0). (5.17)

For the initial condition with §(0) < 0, &,(0) is a
quadratic polynomial in A with a positive coefficient
of A% and a negative constant term. Therefore, it is
always possible to find a positive value of A such that
&6,(0) < 0; the interval of admissible values is

M) [( MO )2_ 6(0) 1'7?
4M(0) {(4m(0), 2M©0) )
(5.18)

It is evident from (5.18) that A > 0 for any initial
condition with 6(0) < 0, so that the interval is finite.
Finally, (5.14) and (5.15) imply that for such an initial
condition &,(¢) and P (¢) are always negative and be-
come exponentially more negative with time.

To establish instability it is necessary to demonstrate
growth of the disturbance norm /#!/2. This is done by
noting that, from the definition (5.7b),

?(t) = IL% {(.REE - IREnI)EZ + (Rfm - |RE11|)772}

O<A<A=

X dxdz, (5.19)
and hence
P(t)=(—«) IL%(EZ + n2)dxdz = —xM(2),
(5.20)
where

K ESUp{lRe,,I _REE’ 'Rfﬂ’ "R.,m}. (5.21)

Since 2(0) < 0 for the initial condition under consid-
eration and therefore « > 0, (5.20) together with (5.15)
proves that the disturbance grows according to

M) > 16:O1 e, 0<A< A (5.22)
' K

The inequality (5.22) is the major result of this section.
It provides an a priori estimate of the growth rate of a.
symmetric instability in terms of the basic-flow param-
eters.

We now consider the special case of an initial con-
dition with 2(0) < 0 and

u(x, z,0) = &(x, z,0) = Ne(x, z, 0),
w(x, z,0) = n(x, z,0) = Ap(x, z,0), (5.23)

in which case #,(0) = 0 and 6,(0) = P,(0). From
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(5.12b) it is then clear that the conditions A > 0, 6,(0)
= P,(0) < 0 are satisfied for all X in the interval

|2(0)]\!?
M(O)) '

From (5.15) and that &,(0) = P\(0) it follows that
P(t) < Pr(0)e?, (5.25)

with A chosen within the interval (5.24). Finally, from
(5.25)

0<>\<A*E( (5.24)

220 oni

K

M(t) > , O< A< A* (5.26)
This provides, in a certain sense to be made clear, the

maximally attainable estimate of disturbance growth.

e. Estimate from above of increase in disturbance
amplitude

From the main inequality (5.14) we may also obtain
an estimate from above of the increase in disturbance
amplitude. The idea is to find a value of A such that
the functional P, is positive definite for any displace-
ment field (£, 7). In this case the functional &, is also
positive definite, and as a consequence (5.14) provides
an upper bound on disturbance growth.

To this end, consider the quantity A™ defined by

A" = supA*, (5.27)

where the supremum is taken over all displacement
fields (£, 7) for which 2(0) < 0. [ This extremization
problem is mathematically equivalent to that of deter-
mining the maximum of the quadratic functional
—?(0) subject to the constraint M(0) = 1.] From
(5.12b) and the definition of A* it then follows im-
mediately that 2, (0) > 0 whenever A > A*. The result
applies a fortiori to displacement fields for which 2 (0)
> 0. Thus, the functionals 2, (0) and therefore &,(0)
are positive definite for any A = A" + e with e > 0, in
which case (5.14) takes the form

Eprsc(t) < 6per (0) XA, (5.28)
Now, (5.12b) together with the fact that %, = 0 implies
(A + )’ M = Pporye — P < Epepc — P, (5.29)
whence
(AT + €)2M — (ATYP M < Epvye — Pa+ < Eptye

(5.30)
after using
» P+ = 0. (5.31)
Putting (5.30) together with (5.28) then yields
é‘,A"’+e(0) 2(A*+e)t
< — ¢ . 32
m(z)<(2€A++62) , €>0. (5.32)
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It may be noted that the upper estimate of disturbance
growth provided by (5.32) is virtually identical to the
lower estimate (5.26) for the most dangerous instabil-
ity. Thus, we have a very tight estimate of the largest
growth rate.

f. Comparison with linear normal-mode analysis
In a linear normal-mode analysis, we have from (5.1)

(5.33)

where ¢ is the growth rate. Multiplying (5.3a) and
(5.3b) by £ and 5, respectively; adding the result; and
integrating the sum over the domain yields

o? I‘L (&% + 9?)dxdz

u=ocf, w=aon,

= _ff (RgE? + 2Ry,én + Rym?)dxdz
D

2 (=P(0))
M(0)

Therefore, the growth rate given by the normal-mode
analysis is equal to the greatest lower bound estimated
by (5.24) and (5.26). Since the least upper bound from
(5.32) is given by the same expression, these estimates
give the exact growth rate of the normal mode (if a
normal mode exists).

(5.34)

g. Further considerations

The linear analysis of this section is considerably
more general than the normal-mode analysis, as can
be seen from the following example.

Suppose our domain D is divided into two subdo-
mains, D, and D_, where the potential vorticity is ini-
tially positive in D, and negative in D_. Normal-mode
analysis can tell us nothing about stability in such a
situation. In contrast, the lower bound estimated for
the growth rate shows that as long as A given by (5.18)
is positive, then the perturbation will grow in the sense
that M (¢) increases with time. In particular, if one takes
u(x,z,0)=0=w(x, z,0), then growth will occur if

Pp_(0) <0, |Pp.(0) > Pp,(0). (5.35)

On the other hand, the upper bound estimate shows
that growth will not occur if 2 (0) is non-negative.

6. Instability of a moist atmosphere

In this section we consider the problem of a moist
atmosphere with saturated ascent and unsaturated de-
scent. This system is much more difficult to analyze
than the moist adiabatic system that has been consid-
ered earlier, and general stability theorems of the type
derived in sections 2 and 3 do not seem to be possible.
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For the instability problem, however, progress is pos-
sible in the case of nonoscillatory disturbances (as is
the case with symmetric instabilities), since then the
regions of ascent and descent are fixed in space. The
regions are not known a priori, of course, but the point
is that for any given disturbance they do not change
in time,

Thus, we assume that the domain D is divided into
two subdomains, D, and D_ (which are determined
in any given realization by the initial conditions),
wherein w > 0 and w < 0, respectively. The full set of
governing equations is the same as (2.2 ), with the one
exception that (2.2¢) is replaced by

Do r, in D

= 6.1
Dt kw, in D.,, (6.1)

with k > 0 some constant parameter. As before, our
interest is in the stability of disturbances to some equi-
librium state (2.13). The linearized form of (6.1) about
such a state may be written

0, + ub, + wb, =0, (6.2)
where '
. 0, in D_
0= ] (6.3)
0 —kz, in D..
It follows that (5.2a) is replacéd with
6= '_S(:)x_ ﬂéu (6.4)

while (5.2b) is unchanged, whence (5.3a) and (5.3b)
apply provided we take

M. 2
Ry Ry\ _ M J_IM
R, R g

Lo, L0,

) bo

(6.5)

m

instead of (5.4). The remainder of the analysis of sec-
tion 5 then follows without alteration. The only dif-
ference arises in the optimization problem (5.27) in
that different displacement fields (£, ) imply different
definitions of the regions D. and D. and, hence, dif-
ferent equilibrium fields ©. A detailed exploration of
the technical implications of this interesting optimi-
zation problem is beyond the scope of the present
paper.

7. Discussion

Most of the well-known sufficient criteria for hydro-
dynamical stability have been derived in the first in-
stance under the restrictive assumption of normal-
mode disturbances. It was shown by Fjertoft (1950),
howeyver, that many of these criteria, such as Rayleigh’s
inflection-point and centrifugal-stability criteria, can
also be derived under more general conditions from

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 6

the global invariants of the problem. It thus turns out
that in many cases of interest there is a fundamental
link between symmetries, conservation laws, and sta-
bility theorems, a fact that tends to be obscured by the
normal-mode framework. This link also means that
such stability theorems can often be extended to finite
amplitude, a point that was apparently first recognized
by Arnol’d (1965, 1966). For more discussion of this
subject, one may refer to the articles by Holm et al.
(1985) and MclIntyre and Shepherd (1987), among
others.

To this point, the most successful applications of the
Fjertoft-Arnol’d stability method in geophysical fluid
dynamics have been to barotropic and baroclinic
quasigeostrophic flow, to stratified equilibria, and to
axisymmetric homogeneous flow. A major purpose of
the present paper has been to point out that the well-
known sufficient criterion for symmetric stability,
namely static stability together with positivity of ftimes
the potential vorticity (Fjertoft 1950; Stone 1966;
Hoskins 1974), is also derivable from this approach
and that a nonlinear stability theorem follows directly.
An extension of the stability theorem to moist adiabatic
(saturated ) systems is also possible.

Nonlinear stability is an extremely powerful result.
Even flows that are unstable may be regarded as finite-
amplitude disturbances to stable flows, and if such sta-
ble flows are sufficiently nearby (in a mathematically
precise sense ), then one may use the relevant nonlinear
stability theorem to provide rigorous upper bounds on
the nonlinear saturation of disturbances to the unstable
flow (Shepherd 1988a). This method is developed in
the present context for symmetric instability and ap-
plied to the special but important case of a symmet-
rically unstable baroclinic flow V'(z) oc z. The resulting
bounds constrain the kinetic energy (in the cross-
stream plane) of the growing disturbance. In that sense
they represent a rigorous upper bound on the available
energy in the initial unstable flow. The best (i.e., most
constraining ) bound would obtain on determining the
minimum such bound over all possible choices of stable
basic flows. In practice this minimization calculation
can become technically complicated; in this paper only
a few simple estimates have been provided, which could
doubtless be improved upon.

The notion of treating the unstable flow as a finite-
amplitude disturbance to a stable flow and determining
the pseudoenergy associated with this disturbance—
which then provides a bound on the available energy
for the cross-stream flow—is precisely analogous to the
usual determination of the available potential energy
(APE) associated with departures from a resting, stably
stratified basic state, which is likewise derivable from
the pseudoenergy using Casimir invariants (Shepherd
1993). Indeed, in his classic paper on APE, Lorenz
(1955) suggested that for nonresting basic states that
were stable, one might wish to replace the APE with
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some other quantity that would reflect the dynamical
stability constraints. In general, this is a nontrivial
matter, but for symmetric flows the generalization is
obvious: one simply needs to include the centrifugal
potential energy together with the gravitational energy
and derive an available energy using the pseudoenergy.
It is just such a construction that has been made here
to obtain the rigorous saturation bounds. Of course,
as Lorenz (1955) presciently pointed out, the resulting
available energy is a functional of the background flow
in question.

It is important to appreciate the distinction between
the sort of saturation bounds derived from the nonlin-
ear stability theorem and parcel-based estimates of the
available potential energy that can be converted to ki-
netic energy in slantwise convection (Emanuel 1983).
The parcel calculations are physically well motivated
but suffer from the lack of rigour inherent in any parcel
method (Thorpe et al. 1989), as well as a sensitivity
to the angle at which the presumed parcel motion takes
place: compare, for example, (4.31) with (4.33). On
the other hand, the rigorous upper bounds are just that,
upper bounds, and may not provide particularly good
estimates of the amplitudes actually obtained in a real
instability. In that sense, the two kinds of theoretical
calculations are quite complementary.

The present analysis might be criticized for assuming
inviscid dynamics. Indeed, there is something inher-
ently unsatisfying about inviscid analyses of nonlinear
symmetric instability, for it is well known ( Thorpe and
Rotunno 1989) that no equilibration of symmetric in-
stability is possible without viscosity. Although the un-
derlying stability theory is based on a Hamiltonian for-
mulation of the dynamics, this does not necessarily
preclude the possibility of obtaining saturation bounds
in a forced-dissipative context (cf. Shepherd 1988a,
section 4). It is difficult, however, to see how conven-
tional formulations of viscosity could be included self-
consistently in the present context, as then the back-
ground state would be time-dependent.
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