38 research outputs found

    Fusion of a scid Pre-B Cell with a Wild Type (Myeloma) B Cell Results in Correct Rearrangement of a V(D)J Recombination Substrate

    Get PDF
    Mice with the scid mutation have a defect in the V(D)J recombinase. In order to determine whether the SCID product is normally present in mature B cells that do not have the recombinase activity, scid pre-B cells were fused with myeloma cells. It was found that in the hybrid cells, a rearrangement test gene was correctly joined immediately after fusion. The same test gene was aberrantly rearranged in the scid pre-B cells. Stable hybrids between the scid pre-B and the myeloma cells had lost the expression of RAG-1 and RAG-2 genes, supporting the previous finding of an inhibitor of rearrangement in myeloma cells that acts shortly after fusion. Thus, mature B cells apparently contain the SCID product, the wild type SCID function is not competitively interfered with by products present in scid pre-B cells, and the SCID product seems not to be a target for the recombinase inhibitor

    Expression of λ and K Genes Can Occur in all B Cells and is Initiated Around the Same Pre-B-Cell Developmental Stage

    Get PDF
    Transgenic mice that carry a λ2 transgene under the control of the Vλ2 promoter and the Eλ2-4 enhancer (λ2Eλ mice) are described. A high proportion of B cells in the spleen and the bone marrow express the λ transgene on the cell membrane. λ2 protein is synthesized by all λ2Eλ-derived spleen B-cell hybridomas that have retained the transgene, suggesting that all B cells have the ability to express λ genes. Feedback inhibition of endogenous K-gene rearrangement is significant, but not complete. The results are similar to those with transgenic mice expressing the same λ2 transgene under the control of the heavy-chain enhancer (λ2EH mice). Although the λ2EH transgene is expressed before the λ2Eλ transgene, feedback inhibition seems to occur at about the same stage of B-cell development, regardless of the timing of expression of the λ transgenes. Apparently, feedback is not necessarily coincident with the assembly of a heavy-chain/light-chain complex in pre-B cells. Expression of λ in the normal fetal liver coincides with the expression of K; thus, it appears that λ-gene transcription is not delayed. The differential rearrangement of K and λ genes is discussed in the light of these findings

    B Lymphocytes of Xeroderma Pigmentosum or Cockayne Syndrome Patients with Inherited Defects in Nucleotide Excision Repair Are Fully Capable of Somatic Hypermutation of Immunoglobulin Genes

    Get PDF
    Recent experiments have strongly suggested that the process of somatic mutation is linked to transcription initiation. It was postulated that a mutator factor loads onto the RNA polymerase and, during elongation, causes transcriptional arrest that activates DNA repair, thus occasionally causing errors in the DNA sequence. We report the analysis of the role of one of the known DNA repair systems, nucleotide excision repair (NER), in somatic mutation. Epstein–Barrvirus-transformed B cells from patients with defects in NER (XP-B, XP-D, XP-V, and CS-A) were studied. Their heavy and light chain genes show a high frequency of point mutations in the variable (V), but not in the constant (C) regions. This suggests that these B cells can undergo somatic hypermutation despite significant defects in NER. Thus, it is doubtful that NER is an essential part of the mechanism of somatic hypermutation of Ig genes. As an aside, NER seems also not involved in Ig gene switch recombination

    The very 5′ end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions

    Get PDF
    Somatic hypermutation (SHM) is restricted to VDJ regions and their adjacent flanks in immunoglobulin (Ig) genes, whereas constant regions are spared. Mutations occur after about 100 nucleotides downstream of the promoter and extend to 1–2 kb. We have asked why the very 5′ and most of the 3′ region of Ig genes are unmutated. Does the activation-induced cytosine deaminase (AID) that initiates SHM not gain access to these regions, or does AID gain access, but the resulting uracils are repaired error-free because error-prone repair does not gain access? The distribution of mutations was compared between uracil DNA glycosylase (Ung)-deficient and wild-type mice in endogenous Ig genes and in an Ig transgene. If AID gains access to the 5′ and 3′ regions that are unmutated in wild-type mice, one would expect an “AID footprint,” namely transition mutations from C and G in Ung-deficient mice in the regions normally devoid of SHM. We find that the distribution of total mutations and transitions from C and G is indistinguishable in wild-type and Ung-deficient mice. Thus, AID does not gain access to the 5′ and constant regions of Ig genes. The implications for the role of transcription and Ung in SHM are discussed

    Attracting AID to targets of somatic hypermutation

    Get PDF
    The process of somatic hypermutation (SHM) of immunoglobulin (Ig) genes requires activation-induced cytidine deaminase (AID). Although mistargeting of AID is detrimental to genome integrity, the mechanism and the cis-elements responsible for targeting of AID are largely unknown. We show that three CAGGTG cis-elements in the context of Ig enhancers are sufficient to target SHM to a nearby transcribed gene. The CAGGTG motif binds E47 in nuclear extracts of the mutating cells. Replacing CAGGTG with AAGGTG in the construct without any other E47 binding site eliminates SHM. The CA versus AA effect requires AID. CAGGTG does not enhance transcription, chromatin acetylation, or overall target gene activity. The other cis-elements of Ig enhancers alone cannot attract the SHM machinery. Collectively with other recent findings, we postulate that AID targets all genes expressed in mutating B cells that are associated with CAGGTG motifs in the appropriate context. Ig genes are the most highly mutated genes, presumably because of multiple CAGGTG motifs within the Ig genes, high transcription activity, and the presence of other cooperating elements in Ig enhancers
    corecore