2,275 research outputs found

    Hysteretic properties of a magnetic particle with strong surface anisotropy

    Full text link
    We study the influence of surface anisotropy on the zero-temperature hysteretic properties of a small single-domain magnetic particle, and give an estimation of the anisotropy constant for which deviations from the Stoner-Wohlfarth model are observed due to non-uniform reversal of the particle's magnetisation. For this purpose, we consider a spherical particle with simple cubic crystalline structure, a uniaxial anisotropy for core spins and radial anisotropy on the surface. The hysteresis loop is obtained by solving the local (coupled) Landau-Lifschitz equations for classical spin vectors. We find that when the surface anisotropy constant is at least of the order of the exchange coupling, large deviations are observed with respect to the Stoner-Wohlfarth model in the hysteresis loop and thereby the limit-of-metastability curve, since in this case the magnetisation reverses its direction in a non-uniform manner via a progressive switching of spin clusters. In this case the critical field, as a function of the particle's size, behaves as observed in experiments.Comment: 12 pages, 15 eps figure

    Validity of the scattering length approximation in strongly interacting Fermi systems

    Full text link
    We investigate the energy spectrum of systems of two, three and four spin-1/2 fermions with short range attractive interactions both exactly, and within the scattering length approximation. The formation of molecular bound states and the ferromagnetic transition of the excited scattering state are examined systematically as a function of the 2-body scattering length. Identification of the upper branch (scattering states) is discussed and a general approach valid for systems with many particles is given. We show that an adiabatic ferromagnetic transition occurs, but at a critical transition point kF a much higher than predicted from previous calculations, almost all of which use the scattering length approximation. In the 4-particle system the discrepancy is a factor of 2. The exact critical interaction strength calculated in the 4-particle system is consistent with that reported by experiment. To make comparisons with the adiabatic transition, we study the quench dynamics of the pairing instability using the eigenstate wavefunctions.Comment: 7 pages, 7 figure

    Magnetism of 3d transition metal atoms on W(001): submonolayer films

    Full text link
    We have investigated random submonolayer films of 3d transition metals on W(001). The tight-binding linear muffin-tin orbital method combined with the coherent potential approximation was employed to calculate the electronic structure of the films. We have estimated local magnetic moments and the stability of different magnetic structures, namely the ferromagnetic order, the disordered local moments and the non-magnetic state, by comparing the total energies of the corresponding systems. It has been found that the magnetic moments of V and Cr decrease and eventually disappear with decreasing coverage. On the other hand, Fe retains approximately the same magnetic moment throughout the whole concentration range from a single impurity to the monolayer coverage. Mn is an intermediate case between Cr and Fe since it is non-magnetic at very low coverages and ferromagnetic otherwise.Comment: 5 pages, 3 figures in 6 files; presented at ICN&T 2006, Basel, Switzerlan

    Coupling between magnetic ordering and structural instabilities in perovskite biferroics: A first-principles study

    Get PDF
    We use first-principles density functional theory-based calculations to investigate structural instabilities in the high symmetry cubic perovskite structure of rare-earth (R == La, Y, Lu) and Bi-based biferroic chromites, focusing on Γ\Gamma and RR point phonons of states with para-, ferro-, and antiferromagnetic ordering. We find that (a) the structure with G-type antiferromagnetic ordering is most stable, (b) the most dominant structural instabilities in these oxides are the ones associated with rotations of oxygen octahedra, and (c) structural instabilities involving changes in Cr-O-Cr bond angle depend sensitively on the changes in magnetic ordering. The dependence of structural instabilities on magnetic ordering can be understood in terms of how super-exchange interactions depend on the Cr-O-Cr bond angles and Cr-O bond lengths. We demonstrate how adequate buckling of Cr-O-Cr chains can favour ferromagnetism. Born effective charges (BEC) calculated using the Berry phase expression are found to be anomalously large for the A-cations, indicating their chemical relevance to ferroelectric distortions.Comment: 8 pages, 13 figure

    Major loop reconstruction from switching of individual particles

    Get PDF
    Major hysteresis loops of groups of isolated 60 mm square garnet particles of a regular two-dimensional array, have been measured magnetooptically. Individual loops for each particle were measured, and the statistics of the distribution of coercivities and interaction fields was determined. It is shown that from the measured coercivity distribution and calculated magnetostatic interaction fields the major hysteresis loop can be reconstructed. The switching sequence, and the major loop of an assembly of 535 particles were calculated numerically for two cases: first, when calculating the magnetostatic interaction, the 25 particles were assumed to be isolated; second, the major loop of the same 25 particles, embedded into a 939 square, was reconstructed taking into account the interactions among all 81 particles. The numerically simulated major hysteresis loops agree very well with the measured loops, demonstrating the reliability of numerical modeling

    Quantum nucleation in a single-chain magnet

    Full text link
    The field sweep rate (v=dH/dt) and temperature (T) dependence of the magnetization reversal of a single-chain magnet (SCM) is studied at low temperatures. As expected for a thermally activated process, the nucleation field (H_n) increases with decreasing T and increasing v. The set of H_n(T,v) data is analyzed with a model of thermally activated nucleation of magnetization reversal. Below 1 K, H_n becomes temperature independent but remains strongly sweep rate dependent. In this temperature range, the reversal of the magnetization is induced by a quantum nucleation of a domain wall that then propagates due to the applied field.Comment: 5 pages, 4 figure

    Effects of Bradykinin and Indomethacin on Cyclic GMP and Cyclic AMP in Lung Slices

    Full text link

    Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions

    Full text link
    We consider the tunnel spin current between two ferromagnetic metals from a perspective similar to the one used in superconductor/superconductor tunnel junctions. We use fundamental arguments to derive a Josephson-like spin tunnel current IJspinsin(θ1θ2)I_J^{\rm spin}\propto\sin(\theta_1-\theta_2). Here the phases are associated with the planar contribution to the magnetization, eiθ\sim e^{i\theta}. The crucial step in our analysis is the fact that the zz-component of the spin is canonically conjugate to the phase of the planar contribution: [θ,Sz]=i[\theta,S^z]=i. This is analogous to the commutation relation [ϕ,N]=i[\phi,N]=i in superconductors, where ϕ\phi is the phase associated to the superconducting order parameter and NN is the Cooper pair number operator. We briefly discuss the experimental consequences of our theoretical analysis.Comment: LaTex, seven pages, no figures; version to appear in Europhys. Lett.; in order to make room for a more extended microscopic analysis, the phenomenological discussion contained in v2 was remove
    corecore