28,241 research outputs found

    Integrated multilevel converter and battery management

    Get PDF
    A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles

    Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA

    Get PDF
    This paper presents a methodology for tuning a PID-based feedback controller for a buck converter using the ITAE controller performance index. The controller parameters are optimized to ensure that a reasonable transient response can be achieved whilst retaining stable operation. Experimental results demonstrate the versatility of the on-line tuning methodology

    A cascaded H-bridge BLDC drive incorporating battery management

    Get PDF
    A multilevel BLDC drive is proposed using cascaded H-bridges with isolated sources to provide superior output waveforms and reduced current ripple whilst incorporating observer based SoC estimation. Energy management, based on SoC, is incorporated to improve battery performance, reduce variation between cells and to control charge/discharge profiles

    Neutron Star Properties with Hyperons

    Full text link
    In the light of the recent discovery of a neutron star with a mass accurately determined to be almost two solar masses, it has been suggested that hyperons cannot play a role in the equation of state of dense matter in β\beta-equilibrium. We re-examine this issue in the most recent development of the quark-meson coupling model. Within a relativistic Hartree-Fock approach and including the full tensor structure at the vector-meson-baryon vertices, we find that not only must hyperons appear in matter at the densities relevant to such a massive star but that the maximum mass predicted is completely consistent with the observation.Comment: Minor correction

    Wave propagation through a coherently amplifying random medium

    Get PDF
    We report a detailed and systematic numerical study of wave propagation through a coherently amplifying random one-dimensional medium. The coherent amplification is modeled by introducing a uniform imaginary part in the site energies of the disordered single-band tight binding Hamiltonian. Several distinct length scales (regimes), most of them new, are identified from the behavior of transmittance and reflectance as a function of the material parameters. We show that the transmittance is a non-self-averaging quantity with a well defined mean value. The stationary distribution of the super reflection differs qualitatively from the analytical results obtained within the random phase approximation in strong disorder and amplification regime. The study of the stationary distribution of the phase of the reflected wave reveals the reason for this discrepancy. The applicability of random phase approximation is discussed. We emphasize the dual role played by the lasing medium, as an amplifier as well as a reflector.Comment: 33 pages RevTex, 14 EPS figures included, Accepted for publication in IJMP-

    Ultra-high temperature measuring techniques Final report

    Get PDF
    Real time technique for measurement of high temperature gases and spectroscopic techniques for temperature measurement of hot cesium seeded hydroge

    Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1

    Get PDF
    Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM

    The management of poor performance in nursing and midwifery: a case for concern.

    Get PDF
    Aim(s) - To examine the evidence of how poorly performing nurses and midwives are managed in the UK NHS Background – There is little evidence about poor performance and its management in nursing and midwifery literature. Method(s) – The scoping study comprised a literature search, analysis of recent Nursing and Midwifery Council data and a day’s observation at NMC fitness to practice hearings. Results – Nurses and midwives are the clinical groups most likely to be suspended from work in the NHS; NHS Trusts do not report data on suspensions therefore no statistics exist on numbers, reasons for suspensions, managerial processes, gender, area of work, or ethnicity of those suspended; the few major research projects identify variable management practices regarding poor performance, the significant financial cost to the NHS and the personal cost to those suspended; there is some evidence that inexperienced, poorly trained, or poorly supported managers use suspension inappropriately. Our day of observation supported this. Conclusion(s) – There is a need for more robust data gathering and research in the field of NHS managerial practice. Implications for Nursing Management – Managers should refrain from adopting punitive forms of performance management. Both frontline staff and management need better training and support for dealing with poor performance
    corecore