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Abstract

We report a detailed and systematic numerical study of wave propagation
through a coherently amplifying random one-dimensional medium. The co-
herent amplification is modeled by introducing a uniform imaginary part in
the site energies of the disordered single-band tight binding Hamiltonian. Sev-
eral distinct length scales (regimes), most of them new, are identified from the
behavior of transmittance and reflectance as a function of the material param-
eters. We show that the transmittance is a non-self-averaging quantity with
a well defined mean value. The stationary distribution of the super reflection
differs qualitatively from the analytical results obtained within the random
phase approximation in strong disorder and amplification regime. The study
of the stationary distribution of the phase of the reflected wave reveals the
reason for this discrepancy. The applicability of random phase approximation

is discussed. We emphasize the dual role played by the lasing medium, as an
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amplifier as well as a reflector.
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I. INTRODUCTION

Wave propagation through a random passive medium is being studied intensively over
several decades [[F]. It is now well established that coherent interference effects, due to
elastic scattering by the static disorder, induces Anderson localization for quantum as well
as classical waves. Some physical examples are electron transport in disordered conductors,
light or electro-magnetic wave propagation in random dielectric media, sound propagation
in an inhomogeneous elastic medium, etc. These qualitatively different types of waves in an
appropriate limit follow the same mathematical equation, namely, the Helmholtz equation.
Thus studies on different types of wave propagation complement each other. It is basically
the wave character leading to interference and diffraction which is the common operative
feature. Coherent multiple scattering of a wave from a fixed spatial realization of randomly
distributed scatterers generates an interference pattern in space which is very sensitive to
the actual distribution of scatterers. Small relative displacement of scatterers, of the order of
a fraction of a wavelength, can alter completely the interference pattern. Specifically in the
context of quantum electron transport in one dimensional random media this will make the
resistance ( or the transmittance ) a non-self averaging quantity [Bf] in that the resistance
fluctuations over the ensemble of macroscopically identical samples dominate the ensemble
average, i.e.root mean square variation of sample to sample fluctuations in the resistance over
all the realizations of the macroscopically identical samples exceeds the mean value by orders
of magnitude no matter how large the sample is. The inelastic scattering ( due to phonons or
other quasi-particles ) lead to loss of phase memory of the wave function. Thus the motion of
electrons becomes phase incoherent and sample to sample fluctuations become self-averaging
in the high temperature limit leading to a classical behavior. In recent years the study of
wave propagation in an active random medium [B£1], i.e., in the presence of absorption
or amplification, is being pursued actively. The light propagation in an amplifying (lasing)
medium has its implications for stimulated emission from random media. In a stimulated

emission photons emitted will have the same frequency, phase, direction, and polarization.



This will result in spatial and temporal coherence of laser light propagation.

The absorption in the medium corresponds to the actual removal of the particle ( or
energy in the case of electro-magnetic wave propagation ) by re-combination processes. For
example propagation of optical (excitons) or magnetic excitations in solids which terminate
upon reaching trapping sites. To allow for the possibility of inelastic decay on the otherwise
coherent tunneling through potential barriers several studies invoke absorption [R2,2J]. In
the presence of inelastic scattering due to thermal excitations, electrons are scattered out of
elastic channel to other inelastic channels. In these studies the absorption is identified as the
spectral weight lost in the inelastic channels. As an example, in the case of one-dimensional
double barrier structures the absorbed or attenuated part is assumed to tunnel through
both the left and the right hand sides of the barriers in proportion to the transmission
coefficient of each barrier, and this is added to the coherent transmission to get the overall
transmission coefficient [B3]. In the electro-magnetic wave propagation the bosonic nature
of photons brings in both features, namely that of amplification as well as attenuation.
Photons obey Bose statistics and their number is not conserved. Thus one can consider a
problem of wave propagation in a coherently amplifying (or absorbing) optical medium. In
the Schrodinger equation, to describe the absorption or amplification, one introduces the
imaginary potentials. In that case the Hamiltonian becomes non-Hermitian and thus the
particle number is not conserved. Such Hamiltonians are widely used in Nuclear physics
literature and the corresponding imaginary potentials are called optical potentials. The
absorption or amplification for the case of light propagation is simulated via the imaginary
part of the dielectric constant with opposite signs. It should be noted that in quenched
random systems with imaginary potentials the temporal coherence of the wave is preserved in
spite of amplification or absorption which causes a particle non-conserving scattering process.
Almost all the studies reported so far have considered a linear amplifying or absorbing
medium, irrespective of the fact that real problem of laser oscillations and mode selection
in an optically pumped random medium requires consideration of non-linearities [fi]. In

all these studies the basic issue is to understand the interplay of phase coherent multiple



scattering and amplification (or absorption).

Several new results have been obtained from the studies of wave propagation in an
active medium. In earlier studies it has been widely thought that the effect of absorption on
classical waves is analogous to that of inelastic scattering of electrons. Weaver [[] has shown
that absorption does not provide a cut-off length scale ( similar to an inelastic scattering
length ) for the renormalization of wave transport in the random medium. In other words, the
absorption does not re-establish the diffusive behavior of the wave propagation by destroying
the localization of eigenfunctions. The transport seems to remain non-diffusive even in the
presence of absorption. This fact will have an important bearing on the physics at the
mobility edge in higher dimensional (3-D) systems. In a related development it has been
shown that absorption along with enhanced reflection induces coherence in quantum systems
B4]. In a scattering problem, the particle experiences a mismatch from the real valued
potential to the imaginary valued potential at the interface between the free region and the
absorbing (or amplifying) medium, and hence it tries to avoid this region by enhanced back
reflection. Thus a dual role is played by imaginary potentials as an absorber (or amplifier)
and as a reflector. This point has been emphasized in earlier treatments [§E4R3]. One
can readily show that, when the strength of the imaginary potential is increased beyond
certain limit, both absorber and amplifying scatterer act as a reflector. Thus the reflection
coefficient exhibits non-monotonic behavior as a function of the absorption (amplification)
strength. Using the duality relations it has been shown that amplification suppresses the
transmittance in the large length (L) limit just as much as absorption does [[]. This is
somewhat contrary to the expectation. One would have expected that as a wave passes
through a disordered amplifying medium it undergoes coherent multiple scattering and hence
gets amplified before it escapes from the system. It turns out that coherent amplification
in turn induces localization by enhancement of the coherent backscattering involving longer
return paths, thereby cutting off transmission. Experimentally this reflects in a narrowing
of the backscattering cone in random amplifying medium [[j]. It has been noticed [[7]

that there exists a crossover length scale L. below which the amplification enhances the
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transmission and above which the amplification reduces the transmission which, in fact,
vanishes exponentially in the L — oo limit. In contrast, super-radiant reflectance saturates
to a finite value in the large length limit. Moreover, absorption and amplification of same
strength (i.e., differing only in the sign of the imaginary part) will induce same localization
length [[T]]. Even for an ordered periodic system in the presence of coherent amplification,
the transmittance always decreases in the asymptotic length limit [[J]. This follows from
the fact that the amplifier also acts as a back-scatterer (or reflector) as mentioned above.
To obtain enhanced coherent transmittance, the synergy between wave confinement due
to Anderson localization and coherent amplification by active medium is not necessary.
By a proper choice of a length of an ordered amplifying medium one can achieve large
transmittance. However, for a finite sample of length L to obtain enhanced reflection the
synergy between disorder and amplification plays a major role.

In an amplifying medium even though the transmittance (¢) decreases exponentially with
the length L in the large L limit, the average (t) is shown [[J] to be infinite due to the less
probable resonant realizations corresponding to the non Gaussian tail of the distribution of
In t. This result is based on the analysis using random phase approximation (RPA). Using
duality argument Paasschens et. al. show that non-Gaussian tails in the distribution of Int
contain negligible weight [J]. Thus one might expect finite value for (¢) in the asymptotic
limit. It should be noted that even in the ordered periodic system all the states are resonant
states and still the transmittance decreases exponentially for all the states in the large L
limit. The above simple case may indicate that in the asymptotic limit (f) is indeed finite.
One of our objectives in this paper is to study (numerically) the behavior of the transmission
probability as a function of length in the presence of coherent amplification. We show that
the transmission coefficient is a non-self-averaging quantity. In the large length limit we
do not find any resonant realization, which can give an enhanced transmission. We also
study the behavior the of cross-over length L. as a function of disorder and amplification
strength. As mentioned earlier, upto the cross-over length L. transmittance increases and

after L. it falls exponentially. We have studied the logarithm of the transmittance which



at L.. We have analyzed the behavior of (Int)  asa

will have a maximum value (Int) s

function of disorder and amplification strength. We would like to emphasize that in the lasing
medium the presence of disorder suppresses the average transmittance at all length scales in
comparison with the ordered media having the same strength of amplification. For a given
strength of amplification there exists a critical strength of disorder below which the average
transmittance is always less than unity at all length scales and decreases monotonically. In
this regime L. and (Int), . loose their physical significance. Yet in this regime we show
that there exists a cross-over length scale &, which diverges as the amplification strength
is reduced to zero for a given strength of the disorder. In the case of super reflection in
the presence of disorder we show that there exists a cross-over length L; below which the
averaged logarithm of reflectance, (Inr), is always less than [nr for the periodic (W = 0)
lasing (n # 0) system. L; depends on disorder and amplification strength. Below Ly, (Inr)
is always larger than that for the ordered lasing medium. However, there is another disorder
dependent length scale Ly < L. For a system of size less than L; disorder enhances the
reflection whereas for sizes between Ly and L disorder suppresses the reflection.

In the work by Pradhan and Kumar [ff], the analytical expression for the stationary
distribution Ps(r) of a coherently backscattered reflection coefficient (r) is obtained in the
presence of both absorption and amplification using the method of invariant imbedding [26].
In the presence of a spatially uniform amplification in a random medium and with the help

of random phase approximation, the expression for P(r) is given by

ap(— 2L
Py(r) = % for r>1 (1)

=0 for r<1

where D is proportional to /W, n and W being the strength of amplifying potential and
disorder respectively. One can readily notice from Eqn. ([[) that Ps(r) does not tend to
d(r — 1) in the large n limit. In this limit, as mentioned earlier, an amplifying scatterer
acts as a reflector. Instead, Eqn. ([J) indicates that as D increases the distribution becomes

broad and the most probable value of the reflection coefficient shifts to higher values. Since



the above expression for Py(r) is obtained within the RPA, its validity is limited for small
disorder and amplification strength. Even in the absence of amplification it is well known
that RPA fails in the large disorder limit [E79]. In the presence of small disorder it is
shown that absorption suppresses phase fluctuations making the regime of validity of RPA
still smaller in the parameter space of disorder and absorption [§R0]. We show that this is
true also in the presence of spatially uniform amplification. From Eqn. ([ll) it follows that
the average reflection coefficient (r) is infinite.

With the help of transfer matrix approach we have studied the distribution and statistics
of the transmittance ¢ from which the non-self-averaging nature of ¢ follows. We then

study the behavior of L., L, Ly and (Int) on the material parameters. The probability

distribution of the reflection coefficient P(r, L) tends to a stationary distribution Py(r) in
the large L limit. For a small disorder W and small amplification 7, Ps(r) is qualitatively
in conformity with Eqn. ([l). As we increase 7, a double peak structure appears in Ps(r)
and as we increase 7 further, Py(r) tends towards §(r — 1). The average of Inr obtained
from Py(r) exhibits maxima as a function of 1. We also show that amplification suppresses
the phase fluctuation of the complex reflection amplitude. In the next section we define our

model Hamiltonian and transfer matrix approach. Later sections are devoted to results and

conclusions.

II. NUMERICAL PROCEDURE

We consider a quasi-particle moving on a lattice. The appropriate Hamiltonian in a

tight-binding one-band model can be written as
H = 3 e n)nl+V(n)(n+1] + In)(n—1)). (2)

V' is the off-diagonal matrix element connecting nearest neighbors separated by a lattice
spacing a (taken to be unity throughout) and |n) is the non-degenerate Wannier orbital

associated with site n, where €, = ¢, — in is the site energy. The real part of the site



energy €, being random represents static disorder and €, at different sites are assumed to be
uncorrelated random variables distributed uniformly (P(e,) = 1/W) over the range —W/2
to W/2. Here W can be interpreted as the strength of the disorder. We have taken imaginary
part of the site energy n to be spatially uniform and depending on whether the medium is
amplifying or absorbing, it is set to positive or negative values. Since all the relevant energies
can be scaled by V', we can set V to unity. The lasing medium consisting of N sites (n = 1
to V) is embedded in a perfect infinite lattice with all site energies taken to be zero.

To calculate the transmission and reflection coefficients we use the well known transfer-
matrix method [B{]. Here we describe the method very briefly. Let the sample be placed be-
tween two semi-infinite perfect leads. With the wave-function v inside the sample expressed
as a linear combination of the Wannier orbitals |n) with coefficients ¢, the Schrodinger

equation Hy = up leads to

C, e | C,
+1 _ % (3)

Cn 1 0 Cpn—1

where FE is the energy of the incident particle. Thus to obtain all the coefficients ¢,, for
n =1to N, we just have to evaluate the product of N 2 x 2 matrices T; of the type shown

k

above. If a plane wave e?*" is sent through the perfect lead from one side then the solutions

on the two sides of the sample are related by a product matrix M i.e.,

N
M = wS! HTZS,

i=1

where

0 6—ik(N+1) ’ 1 1
The transmission (¢) and reflection (r) coefficients in terms of the matrix elements of M are

detM |M12|2
= ., = )
| M1 |2 | M 1|2

Since the Hamiltonian is non-hermitian we have ¢t 4+ r # 1.



III. RESULTS AND DISCUSSION

In our studies we have set the energy of the incident particle at £ = 0, i.e., at a midband
energy. Any other value for the incident energy does not affect the physics of the problem.
In calculating average values in all cases we have taken 10,000 realizations of random site
energies (€,). The strength of the disorder and the amplification are scaled with respect to
V,ie, W (=W/V)and n (=n/V). The length L denotes the dimensionless length in the
unit of lattice spacing a.

Depending on the parameters n, W and L the transmission coefficient can be very large
(of the order of 10'? or more). Hence, we first consider behavior of (Int) instead of ().
The angular brackets denote the ensemble average. In Fig. [l we have plotted (Int) as a
function of the length L for a fixed value of amplification strength n = 0.1 and for various
values of the disorder strength W as indicated in the figure. In the absence of disorder
(W = 0) as one varies the length, initially the transmission increases to a very large value
(t ~ 10'?) through large oscillations and after exhibiting a maximum at the length L., and
again through oscillations, it eventually decays exponentially to zero as L — oo. We denote

the maximum in (Int) at L = L. as (Int) L. being the cross-over length. In the presence

of disorder one readily notices that (Int) is suppressed at all lengths as compared to an
ordered amplifying medium of same 7. Both L. and (Int), . decrease as functions of the
disorder strength. When the disorder strength is large (see Fig. [l for W = 3.0) the average
transmittance becomes less than unity and decreases monotonically as a function of L. In

this regime both L, and (Int) lose their physical significance. We will show later that

maz
even in this regime one can still define a new cross-over length scale, say £.. The existence of
L. can be attributed to the synergetic effect between the amplification and the localization.
Eventually the strong back scattering arising due to both serial one dimensional disordered
potential and amplification leads to an exponential decay of the transmittance. From the

graphs of (Int) versus L, one can find the corresponding localization length. We denote

the localization length by [, for an ordered medium (W = 0) in the presence of uniform



amplification. The localization length [BI] for a disordered passive medium (7 = 0) is given
by elastic back scattering length [ = 48V2/W? at the center of the band (F = 0). We have
verified that the localization length in the presence of both disorder and amplification, [I{]
¢ is related to [ and I, (for n/V < 1and W/V < 1) as £ = ll,/(l +1,). We have also verified
that £(n) = £(—n) as shown by Paasschens ef. al. using duality argument [f].

Fig. B illustrates the behavior of (Int) as a function of L for a fixed value of disorder
W = 1.0 and for various values of the amplification strength 7 as indicated in the figure. One
finds that the cross-over length L. is a monotonically decreasing function of 7. However,
(Int) . initially increases with n and after exhibiting maxima, (Int) . decreases with
further increase in 7).

We will now study the behavior of L. and (Int) as functions of W and 7 in the

max

max

parameter space where L. and (Int),  are well-defined. In Fig. f we have plotted (Int)
versus W for a fixed n = 0.1. In the inset of Fig. f is shown the dependence of L. on W. It
is clear that both (Int),  and L. monotonically decrease with W. The cross-over length L.
does not follow the 1/W prediction [[[(J]. This comes out by curve fitting our numerical data
in the full parameter range. The prediction that L. ~ 1/W has the shortcoming that in
the limit W — 0 it tends to infinity, but we know that for a perfect ordered lasing medium
(W =0) L. is indeed finite. The validity of L. ~ 1/W in the intermediate regime is not
ruled out.

In Fig. [] we have plotted (Int) against 7 for a fixed value of W = 1.0 and the inset

shows variation of L. with n for W = 1.0. Initially (Int) . increases with n and after
exhibiting a maxima it decays to zero for large n. This arises from the fact that the lasing
medium acts as a reflector for large n as discussed in the introduction. Near the maximum,
in a finite regime of 7, (Int)  exhibits several oscillations. In this region sample to sample
fluctuations of Int are very large. Thus average over 10,000 realizations may not represent
the true ensemble averaged quantity. From the curve fitting of our numerical data for L.,

we find that L. does not follow a power law, (1/,/7), in the full parameter regime [[7].

To study the nature of fluctuations in the transmission coefficient, in Fig. | we have
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plotted, on log-scale, (t), root-mean-squared variance t, = \/(t2) — (t)*> and root-mean-
squared relative variance (or fluctuation) t,, = \/(t2) — (t)?/ (t) as a function of L for n = 0.1
and W = 1.0. For these parameters [ ~ 48,], = 10, ¢ ~ 8 and L. ~ 30. We notice that both
(t) and t, exhibit maxima and decrease as we increase the length further. Except in the
small length limit, variance is larger than the mean value. The relative variance is larger
than one for L > 10 and remains large even in the large length limit. The t,, fluctuates
between values 50 to 300 in the large length (L > 10) regime, indicating clearly the non-self-
averaging nature of the transmittance. This implies that the transmission over the ensemble
of macroscopically identical samples dominates the ensemble average. The transmissions
across the sample is very sensitive to the spatial realizations of impurity configurations.
Because (t) being non-self-averaging, it does not represent a well defined physical quantity.
In such a situation one has to consider the full probability distribution P(t) of ¢ to describe
the system behavior. In Fig. | we have plotted P(¢) as a function of ¢ for various values
of L as indicated in the figures. We have chosen W = 1.0 and n = 0.1. We see that for
L < L.(=~ 30) P(t) is a peaked distribution with a negligible weightage at large t. As we
increase L further the distribution broadens and the peak shifts to higher values of ¢ with
the emergence of a tail. For larger value L > L, the peak again becomes sharper and starts
shifting towards lower value of ¢ with a small weightage at tails. For further increase in L a
sharp peak appears around ¢t = 0 with a negligible weightage in the tail of the distribution.

We would now like to understand whether there exist any resonant realizations in the
large length limit for which the transmittance is very large. This study calls for sample
to sample fluctuations. It is well known from the studies in passive random media that
the ensemble fluctuation and the fluctuations for a given sample as a function of chemical
potential or energy are expected to be related by some sort of ergodicity [BZ], i.e., the
measured fluctuations as a function of the control parameter are identical to the fluctuations
observable by changing the impurity configurations. In Fig. [](a) we have plotted ¢ versus

incident energy F (within the band from —2 to +2) for a given realization of random
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potential with » = 0 and L = 100. The Fig. [](b) shows the behavior of ¢ versus E for
the same realization in the presence of amplification n = 0.1 and L = 100. From the Fig.
[l(a) we observe that at several values of energy the transmittance exhibits the resonant
behavior in that ¢ = 1. These resonant states make the average of Landauer four probe
conductance ( G = (e?/wh)t/(1 —t) ) infinite [B3,BF). From Fig. [J(b) we notice that in the
presence of amplification, transmittance at almost resonant realizations is negligibly small.
Few peaks appear in the transmittance whose origin lies in the combined effect of disorder
and amplification. However, we notice that the transmittance at these peaks is much smaller,
where as one would have naively expected the transmittance to be much much larger than
unity in the amplifying medium. We have studied several realizations and found that none
of them shows any resonant behavior where one can observe the large transmittance. The
peak value of observed transmittance is of the order of unity or less. This study clearly
indicates that () is indeed finite contrary to the earlier predictions based on RPA [[J].

So far our study was restricted to the parameter space of W and n for which L, and

hence (Int)  exist. In Fig. § we have plotted (Int) against L for ordered lasing medium

(W = 0,n = 0.01), disordered passive medium (W = 1.0, = 0) and disordered active
medium (W = 1.0,n = 0.01). The present study is restricted to the parameter space of n
and W such that n < 1.0 and W > 1.0. We notice that for an ordered lasing medium,
the transmittance is larger than one. We have taken our range of L upto 300. Needless
to say, in the asymptotic regime, for an ordered lasing medium, the transmittance tends to
zero exponentially. For a disordered active medium (W = 1.0,n = 0.01), we notice that the
transmittance is always less than one and monotonically decreasing. Initially, upto certain
length, the average transmittance is, however, larger than that in the disordered passive
medium (W = 1.0,y = 0). This arises due to the combination of lasing with disorder. In
the asymptotic regime transmittance of a lasing random medium falls below that in the
passive medium with same disorder strength. This follows from the enhanced localization

effect due to the presence of both disorder and amplification together, i.e., & < [. It is

clear from the figure that (Int) does not exhibit any maxima and hence the question of
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L. or (Int) does not arise. We notice, however, from the figure that for random active

medium initially (Int) decreases with a well defined slope and in the large length limit (Int)
decreases with a different slope (corresponding to localization length &). Thus we can define
a length scale &. (as indicated in the figure) at which there is a cross-over from the initial
slope to the asymptotic slope. In the inset of Fig. § we have shown the dependence of &,
on 7. Numerical fit shows that & scales as 1/,/7, as we expect § — oo with n — 0. As
one decreases 7, the absolute value of initial slope increases and that of the asymptotic one
decreases. Simultaneously, the cross-over length &, increases. In the n — 0 limit both initial
as well as asymptotic slopes become identical.

In Fig. P we plot (Inr) as a function of the length L for a fixed value of amplification
strength n = 0.1 and for various values of the disorder strength W as indicated in the figure.
In the absence of disorder (W = 0) as one varies length, initially the reflectance increases to
a very large value through large oscillations and after exhibiting a maximum again through
oscillations, it eventually saturates to a finite (large) value. In the presence of disorder
one can readily notice that initially (Inr) increases and has a magnitude larger than that
for W = 0 case and asymptotically beyond a disorder dependent length scale L, (W), it
saturates to a value which is smaller than that for a W = 0 case. The magnitude of the
saturation value of (Inr) decreases as one increases the disorder as a result of localization
induced by combined effect of disorder and amplification. Below the length scale Li(W) we
can identify another disorder dependent length scale Ly(WW). Above Lo (but smaller than
Ly) further increase in disorder suppresses the reflectance whereas below Ls it enhances the
reflectance. The length scale Ly being much smaller than the localization length [ for the
passive medium, increase in disorder causes multiple reflections in a sample of size smaller
than L, and consequently due to the increase in delay time we get enhanced back reflection.
Beyond Ly due to disorder induced localization delay time decreases and as a consequence
we obtain reduced reflectance.

The dependence of L; and Ly on W for a fixed value of n = 0.1 is shown in Fig. [0

Both these length scales decrease as we increase W. The magnitude of Ly is closer to the
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value of L, for a given disorder. In calculating L; we encounter error bars as the reflectance
of a perfect system (W = 0) exhibits oscillations. Curve fitting for larger values of disorder
indicates that L; and Ly decreases as 1/ and 1/W respectively. From the existence of
Ly and L5 one can readily infer that, if we have a sample of fixed length L and amplification
7, then as we increase disorder W first due to multiple reflection (sample size L being less
than L) reflectance will increase. When the disorder strength becomes large such that
Lo < L disorder induced localization will reduce the reflectance. This is shown in Fig. [l
where we plot (Inr) versus W for a sample of fixed length L = 45 and amplification n = 0.1.

In Fig. [[d we have plotted the stationary distribution Pj(r) of reflection coefficient r
for different values of 1 (as shown in the figure) and a fixed value of W = 5.0. To obtain
stationary distribution we have considered sample sizes much larger than the localization
length & such that any increment in the length does not change the distribution. For small
values of n = 0.05 the stationary distribution P;(r) has a single peak around r = r,,,, = 1.
The peak (rq.) shifts to higher side as we increase n (Fig. [(b)). The behavior of Ps(r)
for small 7 is in qualitative agreement with Eqn. ([]). As we increase 7 further P(r) exhibit
a double peaked structure (Fig. [J(c)). At first the second peak appears at higher value of
r at the expense of the distribution at the tail. As we increase 1 the second peak becomes
more prominent and shifts towards left, where as the height of the first peak decreases. The
distribution at the tail has a negligible weight (see Fig. [[4(c)). At still higher values of ), the
second peak approaches r &~ 1 whereas the first peak disappears. The now-obtained single
peak distribution P,(r) in the large n limit tends to §(r — 1). In this limit the amplifying
medium acts as a reflector and the disorder plays a sub-dominant role. The occurrence of the
double peak structure along with Ps(r) — d(r — 1) in the large 1 limit cannot be explained
even qualitatively from Eqn. ([]). This is due to the failure of RPA in this regime.

In Fig. [3 we have plotted (Inr),, obtained from P;(r), as a function of n for W = 1.0
and W = 5.0 as indicated in the figure. As we increase the strength of n, (Inr), first increases
and after exhibiting a maximum at 7 = 7yq., (Inr), decreases monotonically. The numerical

value of 1,4, depends on the material parameters. For the value n > 1,,4., the amplifying
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medium acts dominantly as a reflector. It should be noted that the double peak structure in
Py(r) appears for values of 7 close t0 Mpqe- For a given amount of disorder and for n < 7,4
the increase in reflectance (beyond unity) as function of 1 is due to the presence of disorder
along with amplification. The randomness leads to multiple reflections and as a consequence
particles spend large amount of time in the sample before getting coherently reflected. This
enhances the total reflection and the peak value of P;(r) shifts to higher values of r. Beyond
Nmaz, the amplifying medium plays a dominant role as a reflector, leading to decrease in
(Inr),. Physics of the double peak and overall shape of Py(r) shows similarity with the
stationary distribution obtained in the case of absorption (for details we refer to Ref. [§]).
Fig. [[4 shows the stationary distribution P;(#) of the phase 6 of the complex reflection
amplitude for different values of 7. For the sake of convenience we have used the same
parameters as in Fig. [[3. It is clear from this figure that as we increase n phase fluctuations
are suppressed. Double peak distribution is obtained even for small n (Fig. [4(a)). With
increasing 1 the peaks become prominent and they move apart. In the large n limit Ps(6)
tends to 0(0) and (0 + 27). It should be noted that only in the limit W < 1 and n < 1 we
obtain a uniform phase distribution over the range 0 to 27. It is this suppression of phase
fluctuations in the presence of amplification which leads to the breakdown of RPA. Hence
the results based on RPA cannot explain the observed distribution of Ps(r) at large n (Fig.

[J(c,d)), even qualitatively.

IV. CONCLUSIONS

Our numerical study on the statistics of transmission coefficient in random lasing medium
indicates that in the asymptotic regime the transmission coefficient is a non-self-averaging
quantity,however, with a well defined finite average value. We have shown that disorder
suppresses the transmittance at all length scales for a given fixed 7. In some parameter space
transmittance initially increases with n and falls off exponentially to zero in the asymptotic

regime. In this regime there is a well defined cross-over length L. at which the transmittance
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is maximum, and it decreases monotonically with 7 as well as W. In the parameter range
where 1 < 1, in the presence of disorder the average transmittance decreases monotonically
and has a magnitude less than unity. In this regime L. does not exist. However, one can
still define a new length scale &, which scales as 1/,/7. We have also shown that there are
two more length scales L, (W) and Lo(W) associated with reflectance. For a system size
upto Lo (W) disorder increases reflectance, for Lo(W) < L < Li(W) disorder suppresses the
reflectance. However, in this regime the reflectance is larger than that for an ordered lasing
medium. For L > L;(W) disorder suppresses the saturated value of (Inr) to a value much
less than that for the case of the ordered lasing medium. Our results clearly indicate that
to obtain an enhanced back reflection for a sample of fixed length L, the synergy between
the disorder and the amplification is necessary. The nature of the stationary distribution
of reflection coefficient Ps(r) indicates that earlier analytical studies fail, even qualitatively,
to explain the observed behavior in the large n limit. In this limit, one can show that
amplification suppresses the phase fluctuations of complex reflection amplitude and thus
RPA is no longer valid. Our study clearly brings out the dual role played by an amplifying

medium, as an amplifier as well as a reflector.

16



REFERENCES

*  e-mail: joshi@iop.ren.nic.in

T e-mail: jayan@iop.ren.nic.in
[1] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

[2] See Scattering and Localization of Waves in Random Media, edited by Ping Sheng
(World Scientific, Singapore, 1990).

[3] P. A. Lee, A. D. Stone and H. Fukuyama, Phys. Rev. B 35, 1039 (1987)
[4] N. Kumar and A. M. Jayannavar, Phys. Rev. B 32, 3345 (1985)

[5] N. M. Lawandy et. al. , Nature 368, 436 (1994); D. S. Wiersma, M. P. van Albada and
Ad Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).

[6] P. Pradhan and N. Kumar, Phys. Rev. B 50, 9644 (1994).
[7] R. L. Weaver, Phys. Rev. B 47, 1077 (1993).
[8] Abhijit Kar Gupta and A. M. Jayannavar, Phys. Rev. B 52, 4156 (1995).

[9] J. C. J. Paasschens, T. Sh. Misirpashaev and C. W. J. Beenakker, Phys. Rev. B 54,
11887 (1996).

[10] Z. Q. Zhang, Phys. Rev. B 52, 7960 (1995).

[11] C. W. J. Beenakker, J. C. J. Paasschens and P. W. Brouwer, Phys. Rev. Lett. 76, 1368
(1996).

[12] A. K. Sen, Mod. Phys. Lett. B 10, 125 (1996).

[13] V. Freilikher, M. Pustilnik, and I. Yurkevich, preprint fond-mat/9605090.

[14] T. Sh. Misirpashaev, J. C. J. Paasschens and C. W. J. Beenakker, Physica A 236, 189
(1997).

17


http://arXiv.org/abs/cond-mat/9605090

[15] M. Yosefin, Europhys. Lett. 25, 675 (1994).

[16] V. Freilikher, M. Pustilnik, and I. Yurkevich, Phys. Rev. Lett. 73, 810 (1994).
[17] S. John, Phys. Rev. Lett. 53, 2169 (1984).

[18] A. Z. Genack, Phys. Rev. Lett. 58, 2043 (1986).

[19] A. Z. Genack and Garcia, Phys. Rev. Lett. 66, 2064 (1991).

[20] V. Freilikher and M. Pustilnik, Phys. Rev. B 55, 653 (1997).

[21] Sandeep K. Joshi and A. M. Jayannavar, Phys. Rev. B, Nov. 1997 (in press)
[22] A. D. Stone and P. A. Lee, Phys. Rev. Lett. 54, 1196 (1985).

[23] Y. Zohta and H. Ezawa, J. Appl. Phys. 72, 3584 (1992).

[24] A. M. Jayannavar, Phys. Rev. B 49, 14718 (1994).

[25] A. Rubio and N. Kumar, Phys. Rev. B 47, 2420 (1993).

[26] R. Rammal and B. Doucot, J. Phys. (Paris) 48, 509 (1987).

[27] A. D. Stone, D. C. Allan and J. D. Joannopoulos, Phys. Rev. B 27, 863 (1983).
28] A. M. Jayannavar, Solid State Commun. 73, 247 (1990).

[29] A. M. Jayannavar, Pramana J. Phys. 36, 611 (1991).

[30] Y. Liu and K. A. Chao, Phys. Rev. B 34, 5247 (1986); P. K. Thakur, C. Basu, A.
Mookerjee, and A. K. Sen, J. Phys. Condens. Matter 4, 6095 (1992).

[31] E. N. Economou, Green’s Functions in Quantum Physics, 2"? ed. (Springer-Verlag,
Berlin, 1983), p. 174.

[32] P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

[33] R. Landauer, Philos. Mag. 21, 863 (1970).

18



[34] V. I. Melnikov, Fiz. Tverd. Tela (Leningrad) 23, 782 (1981), [Sov. Phys. Solid State 23,
444 (1981)].

19



FIGURES

15.0
100 - :
50 | ]
A
£
v
0.0 W=0.0
5.0 F W=0.5 .
W=3.0 \ W=2.0 W=1.0
-10.0 ‘ ‘ ‘ ‘ ‘
0.0 50.0 100.0 150.0 200.0
L

FIG. 1. Average of logarithm of transmission coefficient ¢ versus length L for n = 0.1 and

different values of W.
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FIG. 2. Average of logarithm of transmission coefficient ¢ versus length L for W = 1.0 and

different values of 7.
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